Skip to main content
Log in

Analytical solutions of transient heat conduction in multilayered slabs and application to thermal analysis of landfills

层状结构中热传导的解析解及其在填埋场热分析中的应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.

摘要

层状结构中瞬态热传导模型广泛应用于不同工程领域.本文建立层状结构中瞬态热传导模型, 模型的边界条件为Dirichlet, Neumann 或 Robin 边界的不同组合,模型考虑不同层中不同的产热函数. 通过叠加法,分离变量法和正交展开法得到模型的解析解.运用两层模型的解析解分析填埋场中的温 度分布并通过数值解验证解答的正确性.表明本文模型及其解析解在瞬态热传导问题中的适用性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GALIP O, SAHIN A Z. Eigenvalue analysis of temperature distribution in composite walls [J]. International Journal of Energy Research, 2001, 25(13): 1189–1196.

    Article  Google Scholar 

  2. LÜ X, LU T, VILJANEN M. A new analytical method to simulate heat transfer process in buildings [J]. Applied Thermal Engineering, 2006, 26(16): 1901–1909.

    Article  Google Scholar 

  3. DAOUAS N. Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model [J]. Applied Energy, 2016, 177: 136–148.

    Article  Google Scholar 

  4. ZHANG S J, LIU Z Q. An analytical model for transient temperature distributions in coated carbide cutting tools [J]. International Communications in Heat and Mass Transfer, 2008, 35(10): 1311–1315.

    Article  Google Scholar 

  5. FASSANI R N S, TREVISAN O V. Analytical modeling of multipass welding process with distributed heat source [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2003, 25(3): 302–305.

    Article  Google Scholar 

  6. BELGHAZI H, EL GANAOUI M, LABBE J C. Analytical solution of unsteady heat diffusion within a porous copper layer deposited on alumina substrate and subjected to a moving laser beam [J]. Defect and Diffusion Forum, 2008, 273–276(3): 52–57.

    Google Scholar 

  7. LIU J C, GRIFFITHS D V. A general solution for 1D consolidation induced by depth- and time-dependent changes in stress [J]. Géotechnique, 2014, 65(1): 66–72.

    Article  Google Scholar 

  8. XIE K H, XIA C Q, AN R, YING H W, WU H. A study on one-dimensional consolidation of layered structured soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1081–1098.

    Article  Google Scholar 

  9. HICKSON R I, BARRY S I, MERCER G N. Critical times in multilayer diffusion. Part 1: Exact solutions [J]. International Journal of Heat & Mass Transfer, 2009, 52 (25, 26)}: 5776–5783.

    Article  MATH  Google Scholar 

  10. WU X, SHI J Y, HE J. Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner [J]. Environmental Earth Sciences, 2016, 75(20): 1371.

    Article  Google Scholar 

  11. WU X, SHI J Y, HE J. Analytical solutions for diffusion of organic contaminant through composite liner considering degradation in leachate and soil liner [J]. International Journal of Environment & Pollution, 2017, 61(2): 166–185.

    Article  Google Scholar 

  12. HANSON J L, LIU W L, YEŞILLER N. Analytical and numerical methodology for modeling temperatures in landfills [J]. Geotechnical Special Publication, 2008, 78(177): 2599–2604.

    Google Scholar 

  13. HANSON J L, YEŞILLER N, ONNEN M T, LIU W L, OETTLE N K, MARINOS J A. Development of numerical model for predicting heat generation and temperatures in MSW landfills [J]. Waste Management, 2013, 33(10): 1993–2000.

    Article  Google Scholar 

  14. HAJI-SHEIKH A, BECK J V, AGONAFER D. Steady-state heat conduction in multi-layer bodies [J]. International Journal of Heat and Mass Transfer, 2003, 46(13): 2363–2379.

    Article  MATH  Google Scholar 

  15. SINGH S, JAIN P K, RIZWAN-UDDIN. Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction [J]. International Journal of Thermal Sciences, 2008, 47(3): 261–273.

    Article  Google Scholar 

  16. DÜLK I, KOVÁCSHÁZY T. A method for computing the analytical solution of the steady-state heat equation in multilayered mdia [J]. Journal of Heat Transfer, 2014, 136(9): 091303.

    Article  Google Scholar 

  17. HAJI-SHEIKH A, BECK J V. Temperature solution in multi-dimensional multi-layer bodies [J]. International Journal of Heat & Mass Transfer, 2002, 45(9): 1865–1877.

    Article  MATH  Google Scholar 

  18. YEN D H Y, BECK J V. Green’s functions and three-dimensional steady-state heat-conduction problems in a two-layered composite [J]. Journal of Engineering Mathematics, 2004, 49(3): 305–319.

    Article  MathSciNet  MATH  Google Scholar 

  19. LÜ X, TERVOLA P, VILJANEN M. A new analytical method to solve the heat equation for a multi-dimensional composite slab [J]. Journal of Physics A: General Physics, 2005, 38(13): 2873.

    Article  MathSciNet  MATH  Google Scholar 

  20. LÜ X, TERVOLA P, VILJANEN M. Transient analytical solution to heat conduction in multi-dimensional composite cylinder slab [J]. International Journal of Heat and Mass Transfer, 2006, 49 (5, 6)}: 1107–1114.

    Article  MATH  Google Scholar 

  21. LI Min, LAI A C K. Analytical solution to heat conduction in finite hollow composite cylinders with a general boundary condition [J]. International Journal of Heat and Mass Transfer, 2013, 60(1): 549–556.

    Article  Google Scholar 

  22. SINGH S, JAIN P K, RIZWAN-UDDIN. Finite integral transform method to solve asymmetric heat conduction in a multilayer annulus with time-dependent boundary conditions [J]. Nuclear Engineering and Design, 2011, 241(1): 144–154.

    Article  Google Scholar 

  23. YANG B G, LIU S B. Closed-form analytical solutions of transient heat conduction in hollow composite cylinders with any number of layers [J]. International Journal of Heat and Mass Transfer, 2017, 108: 907–917.

    Article  Google Scholar 

  24. SINGH I V. Heat transfer analysis of composite slabs using meshless element Free Galerkin method [J]. Computational Mechanics, 2006, 38(6): 521–532.

    Article  MATH  Google Scholar 

  25. WANG H J, DAI W Z, HEWAVITHARANA L G. A finite difference method for studying thermal deformation in a double-layered thin film with imperfect interfacial contact exposed to ultrashort pulsed lasers [J]. International Journal of Thermal Sciences, 2008, 47(1): 7–24.

    Article  Google Scholar 

  26. OZISIK M N. Heat conduction [M]. New York: John Wiley & Sons, 1993.

    Google Scholar 

  27. de MONTE F. Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach [J]. International Journal of Heat & Mass Transfer, 2000, 43(19): 3607–3619.

    Article  MATH  Google Scholar 

  28. de MONTE F. An analytic approach to the unsteady heat conduction processes in one-dimensional composite media [J]. International Journal of Heat and Mass Transfer, 2002, 45(6): 1333–1343.

    Article  MATH  Google Scholar 

  29. SUN Y Z, WICHMAN I S. On transient heat conduction in a one-dimensional composite slab [J]. International Journal of Heat and Mass Transfer, 2004, 47 (6, 7)}: 1555–1559.

    Article  Google Scholar 

  30. LÜ X, TERVOLA P. Transient heat conduction in the composite slab-analytical method [J]. Journal of Physics A General Physics, 2004, 38(1): 81.

    Article  MathSciNet  MATH  Google Scholar 

  31. ZHOU L, BAI M, CUI W. Theoretical solution of transient heat conduction problem in one-dimensional double-layer composite medium [J]. Journal of Central South University of Technology, 2010, 17(6): 1403–1408.

    Article  Google Scholar 

  32. BELGHAZI H, GANAOUI M E, LABBE J C. Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source [J]. International Journal of Thermal Sciences, 2010, 49(2): 311–318.

    Article  Google Scholar 

  33. TIAN M, ZHU S, CHEN Q, PAN N. Effects of layer stacking sequence on temperature response of multi-layer composite materials under dynamic conditions [J]. Applied Thermal Engineering, 2012, 33: 219–226.

    Article  Google Scholar 

  34. FAKOOR-PAKDAMAN M, AHMADI M, BAGHERI F, BAHRAMI M. Dynamic heat transfer inside multilayered packages with arbitrary heat generations [J]. Journal of Thermophysics & Heat Transfer, 2014, 28(4): 687–699.

    Article  Google Scholar 

  35. FAKOOR-PAKDAMAN M, AHMADI M, BAGHERI F, BAHRAMI M. Optimal time-varying heat transfer in multilayered packages with arbitrary heat generations and contact resistance [J]. Journal of Heat Transfer, 2015, 137(8): 081401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wu  (吴珣).

Additional information

Foundation item: Projects(41530637, 41877222, 41702290) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Shi, Jy., Lei, H. et al. Analytical solutions of transient heat conduction in multilayered slabs and application to thermal analysis of landfills. J. Cent. South Univ. 26, 3175–3187 (2019). https://doi.org/10.1007/s11771-019-4244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4244-y

Key words

关键词

Navigation