Skip to main content
Log in

Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP

基于改进的帝国主义竞争算法的神经网络FRP 加固混凝土梁的抗剪强度

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest; however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.

摘要

纤维增强聚合物(FRPS)与钢不同, 是耐腐蚀的, 因此引起人们的兴趣; 然而, 它们的使用受到 限制, 因为它们的脆性剪切在大多数规范中可使用的数据有限. 我们的目的是通过编制一个比较大的 数据库来预测FRP 筋和无箍加固混凝土梁的抗剪强度, 该数据库包含198 份以前公布的试验结果(见 附录). 为了建立抗剪强度模型, 利用Levenberg-Marquardt 和帝国主义竞争算法的集合训练了一个人 工神经网络. 结果表明, 与规范和文献中的方程相比, 模型具有更高的精度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHAHNEWAZ M, MACHIAL R, ALAM M S, RTEIL A. Optimized shear design equation for slender concrete beams reinforced with FRP bars and stirrups using Genetic Algorithm and reliability analysis [J]. Eng Struct, 2016, 107: 151–165.

    Article  Google Scholar 

  2. TOTTORI S, WAKUI H. Shear capacity of RC and PC beams using FRP reinforcement [J]. Aci Sp, 1993, 138(27): 615–631.

    Google Scholar 

  3. DENG Z, GAO L, WANG X. Glass fiber-reinforced polymer-reinforced rectangular concrete columns under simulated seismic loads [J]. J Brazilian Soc Mech Sci Eng, 2018, 40(2): 111.

    Article  Google Scholar 

  4. ATTIA K, ALNAHHAL W, ELREFAI A, RIHAN Y. Flexural behavior of basalt fiber-reinforced concrete slab strips reinforced with BFRP and GFRP bars [J]. Compos Struct, 2019, 211: 1–12.

    Article  Google Scholar 

  5. HASANZADE-INALLU A. Grey wolf optimizer-based ann to predict compressive strength of AFRP-confined concrete cylinders [J]. Soil Structure Interaction, 2018, 3(3): 23–32.

    Google Scholar 

  6. ISSA M A, OVITIGALA T, IBRAHIM M. Shear behavior of basalt fiber reinforced concrete beams with and without basalt FRP stirrups [J]. J Compos Constr, 2015, 20(4): 4015083.

    Article  Google Scholar 

  7. KOTYNIA R, SZCZECH D, KASZUBSKA M. Bond behavior of GRFP bars to concrete in beam test [J]. Procedia Engineering, 2017, 193: 401–408.

    Article  Google Scholar 

  8. NANNI B A, NANNI A. Flexural behavior and design of RC members using FRP reinforcement [J]. J Struct Eng, 1993, 119(11): 3344–3359.

    Article  Google Scholar 

  9. NANNI A, DOLAN C W. Fiber-reinforced-plastic reinforcement for concrete structures [C]// Proceedings of the International Symposium, ACI-SP138. Vancouver, Canada, 1993.

  10. LEE S, LEE C. Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks [J]. Eng Struct, 2014, 61: 99–112.

    Article  Google Scholar 

  11. DHAHIR M K, NADIR W. A compression field based model to assess the shear strength of concrete beams reinforced with longitudinal FRP bars [J]. Constr Build Mater, 2018, 191: 736–751.

    Article  Google Scholar 

  12. GE W, ASHOUR A F, CAO D, LU W, GAO P, YU J, JI X, CAI C. Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars [J]. Compos Struct, 2019, 208: 454–465.

    Article  Google Scholar 

  13. NEHDI M, EL CHABIB H, SAÏD A A. Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach [J]. J Mater Civ Eng, 2007, 19(12): 1033–1042.

    Article  Google Scholar 

  14. FIB Task Group 9.3. FRP reinforcement in RC structures, Bulletin No. 40. [R]. 2007: 160.

  15. KASZUBSKA M, KOTYNIA R, BARROS J A O. Influence of longitudinal GFRP reinforcement ratio on shear capacity of concrete beams without stirrups [J]. Procedia Engineering, 2017, 193: 361–368.

    Article  Google Scholar 

  16. COMMITTEE A. Guide for the design and construction of structural concrete reinforced with FRP bars [R]. 2015.

  17. CAN/CSA. CAN/CSA-S806-12: Design and construction of building structures with fibre-reinforced polymers [M]. Ontario, Canada: Can Stand Assoc, 2012: 206.

    Google Scholar 

  18. IStructE. Interim guidance on the design of reinforced concrete structures using fibre composite reinforcement [M]. London: Inst Struct Eng (IStructE), SETO Ltd., 1999.

    Google Scholar 

  19. JSCE. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials [M]. Research Committee on Continuous Fiber Reinforcing Materials, Japan Society of Civil Engineers, 1997: 23.

  20. ISIS Canada. Reinforcing concrete structures with fiber reinforced polymers, ISISM03-07 [M]. The Canadian Network of Centres of Excellence on Intelligent Sensing for Innovative Structures. Winnipeg, Manitoba: University of Manitoba, 2007: 151.

    Google Scholar 

  21. CNR. Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars, CNR-DT 203/2006 [M]. Rome, Italy: Natl Res Counc, 2007.

    Google Scholar 

  22. EL-SAYED A K, EL-SALAKAWY E F, BENMOKRANE B. Shear strength of FRP-reinforced concrete beams without transverse reinforcement [J]. ACI Struct J, 2006, 103(2): 235–243.

    Google Scholar 

  23. MACHIAL R, ALAM M S, RTEIL A. Revisiting the shear design equations for concrete beams reinforced with FRP rebar and stirrup [J]. Mater Struct, 2012, 45(11): 1593–1612.

    Article  Google Scholar 

  24. LIU R, PANTELIDES C P. Shear strength of GFRP reinforced precast lightweight concrete panels [J]. Constr Build Mater, 2013, 48: 51–58.

    Article  Google Scholar 

  25. GOLAFSHANI E M, ASHOUR A. A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups [J]. Adv Eng Softw, 2016, 97: 29–39.

    Article  Google Scholar 

  26. BASHIR R, ASHOUR A. Neural network modelling for shear strength of concrete members reinforced with FRP bars [J]. Compos Part B Eng, 2012, 43(8): 3198–3207.

    Article  Google Scholar 

  27. NASROLLAHZADEH K, AGHAMOHAMMADI R. Reliability analysis of shear strength provisions for FRP-reinforced concrete beams [J]. Eng Struct, 2018, 176: 785–800.

    Article  Google Scholar 

  28. ACI Committee 318: Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14) [M]. 2014.

  29. PERERA R, BARCHÍN M, ARTEAGA A, de DIEGO A. Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks [J]. Compos Part B Eng, 2010, 41(4): 287–298.

    Article  Google Scholar 

  30. SADOWSKI L, NIKOO M. Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm [J]. Neural Comput Appl, 2014, 25 (7, 8)}: 1627–1638.

    Article  Google Scholar 

  31. VEERAMACHANENI K, PERAM T, MOHAN C, OSADCIW L A. Optimization using particle swarms with near neighbor interactions [C]// Genet Evol Comput—GECCO, 2003: 110–121.

  32. FLOOD I, MUSZYNSKI L, NANDY S. Rapid analysis of externally reinforced concrete beams using neural networks [J]. Comput Struct, 20101, 79(17): 1553–1559.

    Google Scholar 

  33. PANNIRSELVAM N, RAGHUNATH P N, SUGUNA K. Neural network for performance of fibre reinforced polymer plated RC beams [J]. Am J Engin Appl Sci, 2008, 1(1): 82–88.

    Article  Google Scholar 

  34. YANG E T, ASHOUR K H, SONG A F, LEE J K. Neural network modelling of RC deep beam shear strength [J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2008, 161(1): 29–39.

    Google Scholar 

  35. NIKOO M, ZARFAM P, SAYAHPOUR H. Determination of compressive strength of concrete using self organization feature map (SOFM) [J]. Eng Comput, 2015, 31(1): 113–121.

    Article  Google Scholar 

  36. NIKOO M, TORABIAN MOGHADAM F, SADOWSKI Ł. Prediction of concrete compressive strength by evolutionary artificial neural networks [J]. Adv Mater Sci Eng, 2015, 2015: 849126.

    Article  Google Scholar 

  37. SADOWSKI Ł, NIKOO M, NIKOO M. Principal component analysis combined with a self organization feature map to determine the pull-off adhesion between concrete layers [J]. Constr Build Mater, 2015, 78: 386–396.

    Article  Google Scholar 

  38. RAMEZANI F, NIKOO M, NIKOO M. Artificial neural network weights optimization based on social-based algorithm to realize sediment over the river [J]. Soft Comput, 2015, 19(2): 375–387.

    Article  Google Scholar 

  39. NIKOO M, ZARFAM P, NIKOO M. Determining displacement in concrete reinforcement building with using evolutionary artificial neural networks [J]. World Appl Sci J, 2012, 16(12): 1699–1708.

    Google Scholar 

  40. KARA I F. Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming [J]. Adv Eng Softw, 2011, 42(6): 295–304.

    Article  MATH  Google Scholar 

  41. NASROLLAHZADEH K, BASIRI M M. Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system [J]. Expert Syst Appl, 2014, 41(4): 1006–1020.

    Article  Google Scholar 

  42. KHADEMI F, AKBARI M, JAMAL S M M. Prediction of compressive strength of concrete by data-driven models [J]. i-Manager’s J Civ Eng, 2015, 5(2): 16–23.

    Article  Google Scholar 

  43. NAWI N M, KHAN A, REHMAN M Z. A new levenberg marquardt based back propagation algorithm trained with cuckoo search [J]. Procedia Technol, 2013, 11(2): 18–23.

    Article  Google Scholar 

  44. MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters [J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431–441.

    Article  MathSciNet  MATH  Google Scholar 

  45. NIKOO M, RAMEZANI F, HADZIMA-NYARKO M, NYARKO E K, NIKOO M. Flood-routing modeling with neural network optimized by social-based algorithm [J]. Nat Hazards, 2016, 82(1): 1–24.

    Article  Google Scholar 

  46. ATASHPAZ-GARGARI E, LUCAS C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition [C]// 2007 IEEE Congress on Evolutionary Computation, CEC 2007. 2007: 4661–4667.

  47. FAUSETT L. Fundamentals of neural networks [J]. Igarss 2014, 1: 1–5.

    Google Scholar 

  48. HAGAN M, DEMUTH H, BEALE M, de JESU S O. Neural network design, 2/E [M]. USA: Martin Hagam, 2014.

    Google Scholar 

  49. HAYKIN S. Neural networks and learning machines, 3/E [M]. India: Pearson Education, 2010.

    Google Scholar 

  50. KHADEMI F, JAMAL S M. Predicting the 28 days compressive strength of concrete using artificial neural network [J]. i-Manager’s J Civ Eng, 2016, 6(2): 1–6.

    Google Scholar 

  51. KHADEMI F, JAMAL S M, DESHPANDE N, LONDHE S. Predicting strength of recycled aggregate concrete using Artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression [J]. Int J Sustain Built Environ, 2016, 5(2): 355–369.

    Article  Google Scholar 

  52. KHADEMI F, AKBARI M, JAMAL S M. Prediction of concrete compressive strength using ultrasonic pulse velocity test and artificial neural network modeling [J]. Rev Rom Mater J Mater, 2016, 46(3): 343–350.

    Google Scholar 

  53. MATLAB. Mathworks [M]. Natick, Massachusetts, USA, 2018.

    Google Scholar 

  54. ATASHPAZ-GARGARI E. Imperialist competitive algorithm (ICA). MATLAB Central File Exchange, 2008. [Online]. https://www.mathworks.com/matlabcentral/fileexchange/22046-imperialist-competitive-algorithmica.

  55. LIN J L, TSAI Y H, YU C Y, LI M S. Interaction enhanced imperialist competitive algorithms [J]. Algorithms, 2012, 5(4): 433–448.

    Article  MathSciNet  MATH  Google Scholar 

  56. TUREYEN A K, FROSCH R J. Shear tests of FRP-reinforced concrete beams without stirrups [J]. ACI Struct J, 2002, 99(4): 427–434.

    Google Scholar 

  57. RAZAQPUR A G, ISGOR O B. Proposed shear design method for FRP-reinforced concrete members without stirrups [J]. ACI Struct J, 2006, 103(1): 93–102.

    Google Scholar 

  58. EL-SALAKAWY E, BENMOKRANE B. Serviceability of concrete bridge deck slabs reinforced with fiber-reinforced polymer composite bars [J]. ACI Struct J, 2004, 101(5): 727–736.

    Google Scholar 

  59. DEITZ D H, HARIK I E, GESUND H. One-way slabs reinforced with glass fiber reinforced polymer reinforcing bars [J]. Spec Publ, 1999, 188: 279–286.

    Google Scholar 

  60. MICHALUK C R, RIZKALLA S H, TADROS G, BENMOKRANE B. Flexural behavior of one-way concrete slabs reinforced by fiber reinforced plastic reinforcements [J]. Struct J, 1998, 95(3): 353–365.

    Google Scholar 

  61. DHAHIR M K. Shear strength of frp reinforced deep beams without web reinforcement [J]. Compos Struct, 2017, 165: 223–232.

    Article  Google Scholar 

  62. ROKACH L. Ensemble-based classifiers [J]. Artif Intell Rev, 2010, 32 (1, 2)}: 1–39.

    Article  MathSciNet  Google Scholar 

  63. FITA A. Metaheuristic start for gradient based optimization algorithms [J]. Am J Comput Appl Math, 2015, 5(3): 88–99.

    Google Scholar 

  64. OPITZ D, MACLIN R. Popular ensemble methods: An empirical study [J]. J Artif Intell Res, 1999, 11: 169–198.

    Article  MATH  Google Scholar 

  65. NAGASAKA T, FUKUYAMA H, TANIGAKI M. Shear performance of concrete beams reinforced with FRP stirrups [J]. Spec Publ, 1993, 138: 789–812.

    Google Scholar 

  66. NAKAMURA H, TAKESHI H. Evaluation of shear strength of the concrete beams reinforced with FRP [J]. Doboku Gakkai Ronbunshu, 1995, 508: 89–100.

    Article  Google Scholar 

  67. MATTA F, NANNI A, HERNANDEZ T M, BENMOKRANE B. Scaling of strength of FRP reinforced concrete beams without shear reinforcement [C]// Fourth International Conference on FRP Composites in Civil Engineering (CICE2008). Zurich, Switzerland, 2008: 1–6.

  68. VIJAY P V, KUMAR S V, GANGARAO H V S. Shear and ductility behavior of concrete beams reinforced with GFRP rebars [C]// Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures. Acmbs-Ii, Montreal, 1996.

    Google Scholar 

  69. YOST J R, GROSS S P, DINEHART D W. Shear strength of normal strength concrete beams reinforced with deformed GFRP bars [J]. J Compos Constr, 2001, 5(4): 268–275.

    Article  Google Scholar 

  70. EL-SAYED A, EL-SALAKAWY E, BENMOKRANE B. Shear strength of one-way concrete slabs reinforced with fiber-reinforced polymer composite bars [J]. J Compos Constr, 2005, 9(2): 147–157.

    Article  Google Scholar 

  71. RAZAQPUR A G, ISGOR B O, GREENAWAY S, SELLEY A. Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members [J]. J Compos Constr, 2004, 8(5): 452–460.

    Article  Google Scholar 

  72. ASHOUR A F. Flexural and shear capacities of concrete beams reinforced with GFRP bars [J]. Constr Build Mater, 2006, 20(10): 1005–1015.

    Article  Google Scholar 

  73. EL-SAYED A K, EL-SALAKAWY E F, BENMOKRANE B. Shear capacity of high-strength concrete beams reinforced with FRP bars [J]. ACI Struct J, 2006, 103(3): 383–389.

    Google Scholar 

  74. GROSS S P, DINEHART D W, YOST J R, THEISZ P M. Experimental tests of high-strength concrete beams reinforced with CFRP bars [C]// Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada (quoted from Razaqpur and Isgor, 2006), 2004.

  75. GROSS S P, YOST J R, DINEHART D W, SVENSEN E, LIU N. Shear strength of normal and high strength concrete beams reinforced with GFRP bars [C]// Proc of the Int Conference on High Performance Materials in Bridges, ASCE. 2003: 426–437.

  76. TARIQ M, NEWHOOK J P. Shear testing of FRP reinforced concrete without transverse reinforcement [C]// Proceedings, Annual Conference of the Canadian Society for Civil Engineering. 2003: 1330–1339.

  77. ALKHRDAJI T, WIDEMAN M, BELARBI A, NANNI A. Shear strength of GFRP RC beams and slabs [C]// Proceedings of the International Conference, Composites in Construction-CCC. 2001: 409–414.

  78. MIZUKAWA Y, SATO Y, UEDA T, KAKUTA Y. A study on shear fatigue behavior of concrete beams with FRP rods [C]// Proceedings of the Third International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Sapporo, Japan: Japan Concrete Institute, 1997, 2: 309–316.

    Google Scholar 

  79. DURANOVIC N, PILAKOUTAS K, WALDRON P. Tests on concrete beams reinforced with glass fibre reinforced plastic bars [C]// Proceedings of the Third International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). 1997, 2: 479–486.

    Google Scholar 

  80. SWAMY N, ABURAWI M. Structural implications of using GFRP bars as concrete reinforcement [C]// Proceedings of 3rd International Symposium, FRPRCS. 1997, 3: 503–510.

    Google Scholar 

  81. ZHAO W, MARUYAMA K, SUZUKI H. Shear behaviour of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement [J]. Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium. 1995, 29: 352.

    Google Scholar 

  82. GUADAGNINI M, PILAKOUTAS K, WALDRON P. Shear resistance of FRP RC beams: Experimental study [J]. J Compos Constr, 2006, 10(6): 464–473.

    Article  Google Scholar 

  83. ALAM M. Influence of different parameters on shear strength of FRP reinforced concrete beams without web reinforcement [D]. Canada: Memorial University of Newfoundland, 2010.

    Google Scholar 

  84. BENTZ E C, MASSAM L, COLLINS M P. Shear strength of large concrete members with FRP reinforcement [J]. J Compos Constr, 2010, 14(6): 637–646.

    Article  Google Scholar 

  85. ABED F, EL-CHABIB H, ALHAMAYDEH M. Shear characteristics of GFRP-reinforced concrete deep beams without web reinforcement [J]. J Reinf Plast Compos, 2012, 31(16): 1063–1073.

    Article  Google Scholar 

  86. JANG H, KIM M, CHO J, KIM C. Concrete shear strength of beams reinforced with FRP bars according to flexural reinforcement ratio and shear span to depth ratio [C]// Proceedings of 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, FRPRCS. 2009: 9.

  87. OLIVITO R S, ZUCCARELLO F A. On the shear behaviour of concrete beams reinforced by carbon fibre-reinforced polymer bars: An experimental investigation by means of acoustic emission technique [J]. Strain, 2010, 46(5): 470–481.

    Article  Google Scholar 

  88. ALAM M S, HUSSEIN A. Unified shear design equation for concrete members reinforced with fiber-reinforced polymer without stirrups [J]. J Compos Constr, 2012, 17(5): 575–583.

    Article  Google Scholar 

  89. FARGHALY A S, BENMOKRANE B. Shear behavior of FRP-reinforced concrete deep beams without web reinforcement [J]. J Compos Constr, 2013, 17(6): 4013015.

    Article  Google Scholar 

  90. MATTA F, EL-SAYED A K, NANNI A, BENMOKRANE B. Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars [J]. ACI Struct J, 2013, 110(4): 617–628.

    Google Scholar 

  91. MASSAM L. The behaviour of GFRP-reinforced concrete beams in shear [D]. National Library of Canada= Biblioth{è}que nationale du Canada, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panam Zarfam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanzade-Inallu, A., Zarfam, P. & Nikoo, M. Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP. J. Cent. South Univ. 26, 3156–3174 (2019). https://doi.org/10.1007/s11771-019-4243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4243-z

Key words

关键词

Navigation