Skip to main content
Log in

Determination of initial cable force of cantilever casting concrete arch bridge using stress balance and influence matrix methods

基于应力平衡和影响矩阵的混凝土拱桥悬臂浇筑初始索力确定方法研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Cantilever casting concrete arch bridge using form traveller has a broad application prospect. However, it is difficult to obtain reasonable initial cable force in construction stage. In this study, stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge. The stress balance equation and influence matrix of arch rib critical section were established, and the buckle cable force range was determined by the allowable stress of arch rib critical section. Then a group of buckle cable forces were selected and substituted into the stress balance equation, and the reasonable initial buckle cable force was determined through iteration. Based on the principle of force balance, the initial anchor cable force was determined. In an engineering application example, it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable. The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process, which improves the working efficiency and reduces the construction risk. It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.

摘要

采用挂篮悬臂浇筑法建造混凝土拱桥具有广阔的应用前景, 然而确定合理的扣、锚索索力是混 凝土拱桥施工过程中的难点问题. 本文提出采用影响矩阵和应力平衡法确定悬臂浇筑混凝土拱桥施工 阶段的初张索力. 在混凝土拱桥悬臂浇筑施工过程中, 建立拱肋关键截面的应力影响矩阵和平衡方程, 以拱肋关键截面的容许应力为约束条件, 确定各扣索的索力范围. 进而, 选取一组扣索力代入其应力 平衡方程, 采用迭代法确定合理的施工扣索力. 最后, 基于力平衡原理确定锚索力. 工程应用实例表 明, 采用影响矩阵和应力平衡法确定悬臂浇筑混凝土拱桥的合理施工索力是可靠的. 在施工过程中, 拱肋节段的索力只需张拉一次, 本文提出的方法提高了工作效率, 降低了施工风险.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KHAN E, SULLIVAN T J, KOWALSKY M J. Direct displacement-based seismic design of reinforced concrete arch bridges [J]. J Bridge Eng, 2014, 19(1): 44–58.

    Article  Google Scholar 

  2. MOHSENI I, LASHKARIANI H A, KANG J, KANG H T. Dynamic response evaluation of long-span reinforced arch bridges subjected to near-and far-field ground motions [J]. Appl Sci, 2018, 8(8): 1243.

    Article  Google Scholar 

  3. ZHENG Jie-lian, WANG Jian-jun. Concrete-filled steel tube arch bridges in China [J]. Engineering, 2018, 4(1): 143–155.

    Article  Google Scholar 

  4. WEI Jiang-gang, CHEN Bao-chun, WANG Ton-lo. Studies of in-plane ultimate loads of the steel truss web-RC composite arch [J]. J Bridge Eng, 2014, 19(5): 1–8.

    Article  Google Scholar 

  5. YANG Cheng, XIANG Tian-yu, DU Bing. Stochastic long-term behavior of a reinforced concrete arch bridge [J]. Advances in Structural Engineering, 2017, 20(10): 1560–1571.

    Article  Google Scholar 

  6. CHEN Bao-chun, SAVOR Z, HUANG Qing-wei. Material perfor-mance for long span concrete arch bridges:higher is better [C]// ARCH’2016-8th Int Conf on Arch Bridges. Wrocław, Poland, 2016: 85–102.

  7. SALONGA J, GAUVREAU P. Comparative study of the proportions, form, and efficiency of concrete arch bridges [J]. J Bridge Eng, 2014, 19(3): 1–12.

    Article  Google Scholar 

  8. ARENAS J J, CAPELLÁN G, GARCÍA P, MEANA I. Viaduct over River Almonte-conceptual design [C]// ARCH’ 16–8th Int Conf on Arch Bridges. Wrocław, Poland, 2016: 313–322.

  9. ŽDERIĆ Ž, RUNJIĆ A, HRELJA, G. Design and construction of Cetina river arch bridge [C]// ARCH’07-5th Int Conf on Arch Bridges. Funchal, Madeira, Portugal, 2007: 745–750.

  10. CRUZ J P, CORDEIRO L J. Innovative and contemporary porto bridges [J]. Pract Period Struct Des Constr, 2004, 9(1): 26–43.

    Article  Google Scholar 

  11. PENG D G. Design of the new Mike O’Callaghan Pat Tillman memorial bridge at Hoover Dam [C]// ASCE Structures Congress. 2011: 1806–1815.

  12. AU F T K, WANG J J, LIU G D. Construction control of reinforced concrete arch bridges [J]. J Bridge Eng, 2003, 8(1): 39–45.

    Article  Google Scholar 

  13. CAPELLÁN G, MARTÍNEZ J, MERINO E, GARCÍA P, ARRIBAS D, JIMENEZ P. Viaduct over River Almonte-Site control supervision [C]// ARCH’ 16–8th Int Conf on Arch Bridges. Wrocław, Poland, 2016: 487–496.

  14. SONG Gang-bing, WANG C, WANG B. Structural health monitoring (SHM) of civil structures [J]. Applied Science, 2017, 7(8): 789.

    Article  Google Scholar 

  15. LI H N, REN L, JIA Z G,YI T H, LI D S. State-of-the-art in structural health monitoring of large and complex civil infrastructures [J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 3–16.

    Article  Google Scholar 

  16. SONG G, LI W, WANG B, HO S. A review of rock bolt monitoring using smart sensors [J]. Sensors, 2017, 17(4): 776.

    Article  Google Scholar 

  17. LI H, OU J. The state of the art in structural health monitoring of cable-stayed bridges [J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 43–67.

    Article  Google Scholar 

  18. KIM J M, KIM C M, CHOI S Y, LEE B Y. Enhanced strain measurement range of an FBG sensor embedded in seven-wire steel strands [J]. Sensors, 2017, 17(7): 1654.

    Article  Google Scholar 

  19. CHEN D, HUO L, LI H, SONG G. A fiber bragg grating (FBG)-enabled smart washer for bolt pre-load measurement: design, analysis, calibration, and experimental validation [J]. Sensors, 2018, 18(8): 2586.

    Article  Google Scholar 

  20. HEGEDUS G, SARKADI T, CZIGANY T. Self-sensing polymer composite: white-light-illuminated reinforcing fibreglass bundle for deformation monitoring [J]. Sensors, 2019, 19(7): 1745.

    Article  Google Scholar 

  21. CHO K, PARK S, CHO, J R, KIM S, PARK Y H. Estimation of prestress force distribution in the multi-strand system of prestressed concrete structures [J]. Sensors, 2015, 15(6): 14079–14092.

    Article  Google Scholar 

  22. HUO L, CHEN D, LIANG Y, LI H, FENG X, SONG G. Impedance based bolt pre-load monitoring using piezoceramic smart washer [J]. Smart Materials and Structures, 2017, 26(5): 057004.

    Article  Google Scholar 

  23. WANG B, HUO L, CHEN D, LI W, SONG G. Impedance-based pre-stress monitoring of rock bolts using a piezoceramic-based smart washer-A feasibility study [J]. Sensors, 2017, 17(2): 250.

    Article  Google Scholar 

  24. HUO L,WANG B, CHEN D, SONG G. Monitoring of pre-load on rock bolt using piezoceramic-transducer enabled time reversal method [J]. Sensors, 2017, 17(11): 2467.

    Article  Google Scholar 

  25. JIANG T, KONG Q, PATIL D, LUO Z, HUO L, SONG G. Detection of debonding between FRP rebar and concrete structure using piezoceramic transducers and wavelet packet analysis [J]. IEEE Sens J, 2017, 17(7): 1992–1998.

    Article  Google Scholar 

  26. LI Wei-jie, LIU Tie-jun, ZOU Du-jian, WANG Jian-jun, YI Ting-hua. PZT based smart corrosion coupon using electro-mechanical impedance [J]. Mechanical Systems and Signal Processing, 2019, 129: 455–469.

    Article  Google Scholar 

  27. JIANG T, HONG Y, ZHENG J, WANG L, GU H. Crack detection of FRP-reinforced concrete beam using embedded piezoceramic smart aggregates [J]. Sensors, 2019, 19: 1979. DOI: https://doi.org/10.3390/s19091979.

    Article  Google Scholar 

  28. LI Wei-jie, LIU Tie-jun, WANG Jian-jun, ZOU Du-jian. Finite-element analysis of an electro-mechanical impedance-based corrosion sensor with experimental verification [J]. Journal of Aerospace Engineering, 2019, 32(3): 04019012.

    Article  Google Scholar 

  29. DUAN Y F, ZHANG R, DONG C Z, LUO Y Z,OR S W, ZHAO Y, FAN K Q. Development of elasto-magneto-electric (EME) sensor for in-service cable force monitoring [J]. International Journal of Structural Stability and Dynamics, 2016, 16(4): 1640016.

    Article  Google Scholar 

  30. YIM J, WANG M L, SHIN S W, YUN C B, JUNG H J, KIM J T, EEM S H. Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges [J]. Smart Structures and Systems, 2013, 12(3): 465–482.

    Article  Google Scholar 

  31. SINGH V, LLOYD G M, WANG M L. Effects of temperature and corrosion thickness and composition on magnetic measure-ments of structural steel wires [J]. NDT & E International, 2004, 37(7): 525–538.

    Article  Google Scholar 

  32. LI W, FAN S, HO, S M, WU J, SONG G. Interfacial debonding detection in FRP rebar reinforced concrete using electro-mechanical impedance technique [J]. Structural Health Monito-ring, 2018, 17(3): 461–471.

    Article  Google Scholar 

  33. HASSAN M M, NASSEF A O, DAMATTY A A. Determination of optimum post-tensioning cable forces of cable-stayed bridges [J]. Eng Struct, 2012, 44: 248–259.

    Article  Google Scholar 

  34. HA M H,VU Q A, TRUONG V H. Optimum design of stay cables of steel cable-stayed bridges using non-linear inelastic analysis and genetic algorithm [J]. Structures, 2018, 16: 288–302.

    Article  Google Scholar 

  35. KASUGA A, ARAI H, BREEN J E, FURUKAWA K. Optimum cable-force adjustments in concrete cable-stayed bridges [J]. J Struct Eng, 1995, 121(4): 685–694.

    Article  Google Scholar 

  36. WU Jie, FRANGOPOL D M, SOLIMAN M. Geometry control simulation for long-span steel cable-stayed bridges based on geometrically nonlinear analysis [J]. Engineering Structures, 2015, 90: 71–82.

    Article  Google Scholar 

  37. WEI Jian-jun, LI Chuan-fu. Optimization analysis of cable tensions for suspension erection of long-span CFST arch bridge [C]// International Conference on Transportation Engi-neering. 2009: 1808–1813.

  38. BRUNO D, LONETTI P, PASCUZZO A. An optimization model for the design of network arch bridges [J]. Computers and Structures, 2016, 170: 13–25.

    Article  Google Scholar 

  39. ELREHIM M Z, EID M A, SAYED M G. Structural optimization of concrete arch bridges using genetic algo-rithms [J]. Ain Shams Engineering Journal, 2019, 10(3): 507–516. DOI: https://doi.org/10.1016/j.asej.2019.01.005.

    Article  Google Scholar 

  40. SUNG Yu-chi, CHANG D W, TEO E H. Optimum post-tensioning cable forces of Mau-Lo Hsi cable-stayed bridge [J]. Engineering Structures, 2006, 28(10): 1407–1417.

    Article  Google Scholar 

  41. WANG P H, TANG T Y, ZHENG H N. Analysis of cable-stayed bridges during construction by cantilever methods [J]. Computers and Structures, 2004, 82 (4, 5)}: 329–346.

    Article  Google Scholar 

  42. GRANATA M F, LONGO G, RECUPERO A, ARICI M. Construction sequence analysis of long-span cable-stayed bridges [J]. Engineering Structures, 2018, 174: 267–281.

    Article  Google Scholar 

  43. FABBROCINO F, MODANO M, FARINA I, CARPENTIERI G, FRATERNALI F. Optimal prestress design of composite cable-stayed bridges [J]. Composite Structures, 2017, 169: 167–172.

    Article  Google Scholar 

  44. SONG Chao-lin, XIAO Ru-cheng, SUN Bin. Optimization of cable pre-tension forces in long-span cable-stayed bridges con-sidering the counterweight [J]. Engineering Structures, 2018,172: 919–928.

    Article  Google Scholar 

  45. LI Yang, WANG Jiang-long, GE Su-su. Optimum calculation method for cable force of concrete-filled steel tube arch bridae in inclined cable-stayed construction [J]. J Highway Transp Res Dev, 2017, 11(1): 42–48.

    Google Scholar 

  46. NAKAMURA S, TANAKA H, KATO K. Static analysis of cable-stayed bridge with CFT arch ribs [J]. Journal of Constructional Steel Research, 2009, 65(4): 776–783.

    Article  Google Scholar 

  47. CARPENTIERI G, MODANO M, FABBROCINO F, FEO L, FRATERNALI F. On the optimal design of cable-stayed bridges [C]// VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 2016: 3386–3394.

  48. NEGRÃO J H O, SIMÕES L M C. Optimization of cable-stayed bridges with three-tuple modelling [J]. Computers and Structures, 1997, 64(1–4): 741–758.

    Article  MATH  Google Scholar 

  49. KANG H J, ZHAO Y Y, ZHU H P, JIN Y X. Static behavior of a new type of cable-arch bridge [J]. Journal of Constructional Steel Research, 2013, 81: 1–10.

    Article  Google Scholar 

  50. BALDOMIR A, HERNANDEZ S, NIETO F, JURADO J A. Cable optimization of a long span cable stayed bridge in La Coruña [J]. Advances in Engineering Software, 2010, 41 (7, 8)}: 931–938.

    Article  Google Scholar 

  51. TIAN Wei-fei, ZHANG Liang-liang, AYAD T S. Calculation of cable force and pre-camber for long-span rib arch bridge construction by unstressed state concrol method [C]// International Conference on Transportation Engineering, 2011: 2104–2109.

  52. MARTINS A B, SIMÕES L M C, NEGRÃO J J O. Optimization of cable forces on concrete cable-stayed bridges including geometrical nonlinearities [J]. Computers and Structures, 2015, 155: 18–27.

    Article  Google Scholar 

  53. DAI Yu-wen, WANG You-yuan. A research to cable force optimizing calculation of cablestayed arch bridge [J]. Procedia Engineering, 2012, 37: 155–160.

    Article  Google Scholar 

  54. CHEN D W, AU F T K, THAM L G, LEE P K K. Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method [J]. Computers and Structures, 2000, 74(1): 1–9.

    Article  Google Scholar 

  55. WANG P H, TSENG T C,YANG G G. Initial shape of cable-stayed bridges [J]. Computers and Structures, 1993, 47(1): 111–123.

    Article  Google Scholar 

  56. ZHANG J, AU F T K. Calibration of initial cable forces in cable-stayed bridge based on Kriging approach [J]. Finite Elements in Analysis and Design, 2014, 92: 80–92.

    Article  Google Scholar 

  57. JANJIC D, PIRCHER M, PIRCHER H. Optimization of cable tensioning in cable-stayed bridges [J]. J Bridge Eng, 2003, 8(3): 131–137.

    Article  Google Scholar 

  58. GRANATA M F, MARGIOTTA P, RECUPERO A, ARICI M. Partial elastic scheme method in cantilever construction of concrete arch bridges [J]. J Bridge Eng, 2013, 18(7): 663–672.

    Article  Google Scholar 

  59. JTG 3362-2018. Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts [S]. (in Chinese)

  60. JTG D64-2015. Specifications for design of highway steel bridge [S]. (in Chinese)

  61. SI X, AU T F, LI Z. Capturing the long-term dynamic properties of concrete cable-stayed bridges [J]. Finite Engineering Structures, 2013, 57: 502–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-yong Jiang  (蒋田勇) or Yang Deng  (邓扬).

Additional information

Foundation item: Projects (51478049, 51778068) supported by the National Natural Science Foundation of China; Project(14JJ2075, 2019JJ40301) supported by the Hunan Natural Science Foundation of China; Project(17A010) supported by the Scientific Research Fund of Hunan Provincial Education Department of China; Project(2017GK4034) supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Zc., Peng, Wp., Zhang, Jr. et al. Determination of initial cable force of cantilever casting concrete arch bridge using stress balance and influence matrix methods. J. Cent. South Univ. 26, 3140–3155 (2019). https://doi.org/10.1007/s11771-019-4242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4242-0

Key words

关键词

Navigation