Skip to main content
Log in

Fourier-shape-based reconstruction of rock joint profile with realistic unevenness and waviness features

考虑真实凹凸度与粗糙度特征的岩石节理轮廓傅里叶形态重构方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rock joint shape characteristics, waviness and unevenness play essential but distinct roles in shear mechanism of rock joints. This study presents a novel method to generate virtual rock joint profiles with realistic waviness and unevenness features. Firstly, joint profiles are obtained by 3D laser scanning device. Secondly, quantification of waviness and unevenness is conducted by traditional method, including digital filtering technique and roughness parameter RL. Thirdly, the discrete Fourier transform (DFT) method is employed to analyze the joint outlines. Two representative Fourier shape descriptors (D3, D8) for characterization of waviness and unevenness are suggested. Then, the inverse discrete Fourier transform (IDFT) is adopted to reconstruct the joint profiles with random values of phase angles but prescribed amplitudes controlled by D3 and D8. The traditional method is then applied to the reconstructed joint profiles to examine statistically the relationships between D3 and D8 and parameters RL of waviness and unevenness, respectively. The results show that larger D8 tends to result in larger waviness while higher D3 tends to increase unevenness. Reference charts for estimation of waviness and unevenness with different pairs of D3 and D8 are also provided to facilitate implementation of random joint reconstruction.

摘要

岩石节理形态特征, 包括凹凸度与粗糙度, 是影响岩石节理剪切行为的重要因素. 本研究提出了一种新的岩石节理重构方法, 该方法能够考虑与真实节理形态相符的凹凸度与粗糙度特征. 首先, 采用 3D 镭射激光扫描的方法获取节理的表面轮廓信息. 然后, 采用传统的凹凸度与粗糙度指标对节理进行形态特征评价. 接着, 采用傅里叶变换对节理轮廓进行分析, 提出了 D3D8 两个傅里叶形状指标来分别表征节理的凹凸度与粗糙度. 随后, 采用傅里叶逆变换, 通过设置随机的相位角与调控傅里叶形状指标 D3D8 的大小来重构节理轮廓. 最后, 通过采用传统的凹凸度与粗糙度指标对采用傅里叶方法随机重构的节理轮廓进行分析, 研究了傅里叶形状指标 D3D8 与传统的凹凸度和粗糙度指标之间的相关性. 结果表明随着 D3 的增大, 凹凸度增大; 随着 D8 的增大, 粗糙度增大. 本文将 D3D8 和凹凸度与粗糙度之间的相关关系以云图的形式表示出来, 为进一步采用随机轮廓重构方法进行岩石节理数值仿真与力学模拟的相关研究提供了依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KWAFNIEWSKI M A, WANG J A. Surface roughness evolution and mechanical behavior of rock joints under shear [J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34 (3, 4)}: 157–170. DOI: https://doi.org/10.1016/s1365-1609(97)00042-7.

    Google Scholar 

  2. GRASSELLI G, WIRTH J, EGGER P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(6): 789–800. DOI: https://doi.org/10.1016/S1365-1609(02)00070-9.

    Article  Google Scholar 

  3. CAO Ping, HE Yun, FAN Xiang, JIANG Zhe. Evolution of morphology texture characteristics based on rock joints shear tests [J]. Journal of Central South University: Science and Technology, 2013, 44(11): 4624–4630. (in Chinese)

    Google Scholar 

  4. LI Y, ZHANG Y. Quantitative estimation of joint roughness coefficient using statistical parameters [J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 77: 27–35. DOI: https://doi.org/10.1016/j.ijrmms.2015.03.016.

    Article  Google Scholar 

  5. YANG Z Y, CHIANG D Y. An experimental study on the progressive shear behavior of rock joints with tooth-shaped asperities [J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(8): 1247–1259. DOI: https://doi.org/10.1016/s1365-1609(00)00055-1.

    Article  Google Scholar 

  6. JIANG Y, LI B, TANABASHI Y. Estimating the relation between surface roughness and mechanical properties of rock joints [J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(6): 837–846. DOI: https://doi.org/10.1016/j.ijrmms.2005.11.013.

    Article  Google Scholar 

  7. FARDIN N. Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joints [J]. Rock Mechanics & Rock Engineering, 2008, 41(2): 267–297.

    Article  Google Scholar 

  8. KWON T H, HONG E S, CHO G C. Shear behavior of rectangular-shaped asperities in rock joints [J]. KSCE J Civ Eng, 2010, 14(3): 323–332. DOI: https://doi.org/10.1007/s00603-007-0144-9.

    Article  Google Scholar 

  9. LI Y, OH J, MITRA R, HEBBLEWHITE B. A constitutive model for a laboratory rock joint with multi-scale asperity degradation [J]. Computers & Geotechnics, 2016, 72: 143–51. DOI: https://doi.org/10.1016/j.compgeo.2015.10.008.

    Article  Google Scholar 

  10. BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice [J]. Rock mechanics, 1977, 10 (1, 2)}: 1–54. DOI: https://doi.org/10.1007/BF01261801.

    Article  Google Scholar 

  11. TSE R, CRUDEN D M. Estimating joint roughness coefficients [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303–307. DOI: https://doi.org/10.1016/0148-9062(79)90241-9.

    Article  Google Scholar 

  12. YU X, VAYSSADE B. Joint profiles and their roughness parameters [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1991, 28(4): 333–6. DOI: https://doi.org/10.1016/0148-9062(91)90598-G.

    Article  Google Scholar 

  13. GAO Y, WONG L N Y. A modified correlation between roughness parameter Z 2 and the JRC [J]. Rock Mechanics & Rock Engineering, 2015, 48(1): 387–396. DOI: https://doi.org/10.1007/s00603-013-0505-5.

    Article  Google Scholar 

  14. TATONE B S A, GRASSELLI G. A new 2D discontinuity roughness parameter and its correlation with JRC [J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(8): 1391–400. DOI: https://doi.org/10.1016/j.ijrmms.2010.06.006.

    Article  Google Scholar 

  15. CHEN S J, ZHU W C, YU Q L, LIU X G. Characterization of anisotropy of joint surface roughness and aperture by variogram approach based on digital image processing technique [J]. Rock Mechanics & Rock Engineering, 2016, 49(3): 855–876. DOI: https://doi.org/10.1007/s00603-015-0795-x.

    Article  Google Scholar 

  16. SANEI M, FARAMARZI L, GOLI S, FAHZMIFAR A, RAHMATI A, MEHINRAD A. Development of a new equation for joint roughness coefficient (JRC) with fractal dimension: A case study of Bakhtiary Dam site in Iran [J]. Arabian Journal of Geosciences, 2015, 8(1): 465–475. DOI: https://doi.org/10.1007/s12517-013-1147-3.

    Article  Google Scholar 

  17. BROWN, ED E T. Rock characterization, testing & monitoring: ISRM suggested methods [M]. Pergamon Press, 1981. https://www.springer.com/us/book/9783319077123.

  18. BANDIS S, LUMSDEN A C, BARTON N R. Experimental studies of scale effects on the shear behaviour of rock joints [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1981, 18(1): 1–21. DOI: https://doi.org/10.1016/0148-9062(81)90262-X.

    Article  Google Scholar 

  19. HONG E S, KWON T H, SONG K I, CHO G C. Observation of the degradation characteristics and scale of unevenness on three-dimensional artificial rock joint surfaces subjected to shear [J]. Rock Mechanics & Rock Engineering, 2016, 49(1): 3–17. DOI: https://doi.org/10.1007/s00603-015-0725-y.

    Article  Google Scholar 

  20. HENCHER S R, RICHARDS L R. Assessing the shear strength of rock discontinuities at laboratory and field scales [J]. Rock Mechanics & Rock Engineering, 2015, 48(3): 883–905. DOI: https://doi.org/10.1007/s00603-014-0633-6.

    Article  Google Scholar 

  21. OH J, CORDING E J, MOON T. A joint shear model incorporating small-scale and large-scale irregularities [J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 76: 78–87.

    Article  Google Scholar 

  22. HONG E S, LEE I M, CHO G C, LEE S W. New approach to quantifying rock joint roughness based on roughness mobilization characteristics [J]. KSCE J Civ Eng, 2014, 18(4): 984–991. DOI: https://doi.org/10.1016/j.ijrmms.2015.02.011.

    Article  Google Scholar 

  23. ZHAO Y, WAN W, WANG W, PENG Q Y. Shear numerical simulation of random morphology rock joint and nonlinear shear dilatancy model [J]. Chinese Journal of Rock Mechanics & Engineering, 2013, 32(8): 1666–1676. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201308021.htm.

    Google Scholar 

  24. YANG L L, XU W Y, MENG Q X, WANG R B. Investigation on jointed rock strength based on fractal theory [J]. Journal of Central South University, 2017, 24(7): 1619–1626. DOI: https://doi.org/10.1007/s11771-017-3567-9.

    Article  Google Scholar 

  25. LI K H, CAO P, ZHANG K, ZHONG K F. Macro and meso characteristics evolution on shear behavior of rock joints [J]. Journal of Central South University, 2015, 22(8): 3087–3096. DOI: https://doi.org/10.1007/s11771-015-2845-7.

    Article  Google Scholar 

  26. ZHAO L H, ZHANG S H, HUANG D L, ZUO S, LI D J. Quantitative characterization of joint roughness based on semivariogram parameters [J]. Int J Rock Mech Min Sci, 2018, 109: 1–8. DOI: https://doi.org/10.1016/j.ijrmms.2018.06.008.

    Article  Google Scholar 

  27. GREEN R. The spectrum of a set of measurements along a profile [J]. Engineering Geology, 1967, 2(3): 163–168. DOI: https://doi.org/10.1016/0013-7952(67)90015-4.

    Article  Google Scholar 

  28. CHAE B G, ICHIKAWA Y, JEONG G C, SEO Y S, KIM B C. Roughness measurement of rock discontinuities using a confocal laser scanning microscope and the Fourier spectral analysis [J]. Engineering Geology, 2004, 72 (3, 4)}: 181–199. DOI: https://doi.org/10.1016/j.enggeo.2003.08.002.

    Article  Google Scholar 

  29. MOLLON G, ZHAO J. Fourier-Voronoi-based generation of realistic samples for discrete modelling of granular materials [J]. Granular Matter, 2012, 14(5): 621–638. DOI: https://doi.org/10.1007/s10035-012-0356-x.

    Article  Google Scholar 

  30. ZHAO L, HUANG D, DAN H C, ZHANG S H, LI D J. Reconstruction of granular railway ballast based on inverse discrete Fourier transform method [J]. Granular Matter, 2017, 19(4): 74. DOI: https://doi.org/10.1007/s10035-017-0761-2.

    Article  Google Scholar 

  31. ZHAO L, HUANG S, ZHANG R, ZUO S. Stability analysis of irregular cavities using upper bound finite element limit analysis method [J]. Computers and Geotechnics, 2018, 103: 1–12. DOI: https://doi.org/10.1016/j.compgeo.2018.06.018.

    Article  Google Scholar 

  32. MELOY T P. Fast fourier transforms applied to shape analysis of particle silhouettes to obtain morphological data [J]. Powder Technol, 1977, 17(1): 27–35. DOI: https://doi.org/10.1016/0032-5910(77)85040-7

    Article  Google Scholar 

  33. BOWMAN E T. Particle shape characterisation using Fourier descriptor analysis [J]. Géotechnique, 2001, 51(6): 545–554. DOI: https://doi.org/10.1680/geot.2001.51.6.545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-heng Zhao  (赵炼恒).

Additional information

Foundation item: Projects(51478477, 51878668) supported by the National Natural Science Foundation of China; Projects(2014122006, 2017-123-033) supported by the Guizhou Provincial Department of Transportation Foundation, China; Project(201722ts200) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Zh., Wang, X., Huang, Dl. et al. Fourier-shape-based reconstruction of rock joint profile with realistic unevenness and waviness features. J. Cent. South Univ. 26, 3103–3113 (2019). https://doi.org/10.1007/s11771-019-4239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4239-8

Key words

关键词

Navigation