Skip to main content
Log in

Enhancing performance of soil using lime and precluding landslide in Benin (West Africa)

石灰加固贝宁(西非)土的性能及滑坡防控

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The past decade has been characterized by the development of infrastructure in the main cities in West Africa. This requires more comprehensive studies of geotechnical properties of the soil in the region with an aim of creating sustainable development. This paper examined the performance of the soil in Benin (West Africa). In this research, three objectives have been adopted in-depth on the performance characteristics of West Africans soil and aim to (i) accessing characteristics of soil types in the region; (ii) assessing the performance of these soils with 2%, 3% and 5% of lime and (iii) characterizing landslide to evaluate the damage and potential instability. The methods used to examine these objectives are experimental tests according to standard French test. The particle size test, Proctor test, and Atterberg limits test which are physical tests and the mechanical tests such as dynamic penetration test, direct shear test, and oedometer test, were used to assess the first objective. The Proctor test and California bearing ratio test were examined for the second objective and geological, environmental, social and safety study of the river bank slide were evaluated for the third objective. This paper firstly reveals the unstable and stable areas in southern Benin (West Africa) with the presence of clays soil and gives an equation for predicting the unstable and stable area, and secondly shows that the proportion of percentage lime leading to the best performances varying between 2% and 3%. Finally, this paper shows that the sliding of a bank could be the consequence of the sudden receding water recorded in a valley.

摘要

过去数十年, 西非主要城市的基础设施建设快速发展, 亟需对该地区的岩土特性进行全面研究, 以实现可持续发展. 本文研究了西非贝宁土的特性. 在本研究中, 对西非土的性能特征进行了三方面深入研究: 1)获取该地区土壤类型的特征; 2)评价了石灰掺量为2%、3%和5%时土的性能; 3)描述滑 坡特征, 以评估其破坏和潜在的不稳定性. 根据法国标准, 采用试验方法进行研究, 开展颗粒分析试验、击实试验、液塑限试验等物理试验和动力触探试验、直剪试验、固结试验等力学试验以评估目标 一, 开展击实试验和加州承载比试验以评价目标二, 同时对河岸滑坡的地质、环境、社会和安全等进行评估. 本文首先揭示了贝宁南部(非洲)存在黏土的稳定/不稳定地区, 并给出了预测稳定/不稳定地区 的方程. 其次, 研究表明石灰占比在2%~3%之间时土体可达到最佳性能. 最后, 本文指出河岸滑坡可能是由山谷中的突然退水所致.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LAMBE T W, WHITMAN R V. Soil mechanics SI version [M]. John Wiley & Sons, 2008.

  2. HILLEL D. Fundamentals of soil physics [M]. Academic Press, 2013.

  3. BROWN S, LUGO A E. Rehabilitation of tropical lands: A key to sustaining development [J]. Restoration Ecology, 1994, 2(2): 97–111.

    Article  Google Scholar 

  4. BATEY T, MCKENZIE D. Soil compaction: Identification directly in the field [J]. Soil Use and Management, 2006, 22(2): 123–131.

    Article  Google Scholar 

  5. CARTER M R, GREGORICH E G, ANDERSON D W, DORAN J W, JANZEN H H, PIERCE F J. Chapter 1: Concepts of soil quality and their significance [J]. Developments in Soil Science, 1997, 25(97): 1–19.

    Google Scholar 

  6. MILETI D. Disasters by design: A reassessment of natural hazards in the United States [M]. Joseph Henry Press, 1999.

  7. KUKULKA A. Natural disasters and FDI inflow in the developing countries of South-Eastern Asia [J]. Prace Naukowe Uniwersytetu Ekonomicznego we Wroclawiu, 2014(370): 208–216.

  8. LAUBACH S E, OLSON J E, GROSS M R. Mechanical and fracture stratigraphy [J]. AAPG Bulletin, 2009, 93(11): 1413–1426.

    Article  Google Scholar 

  9. FARIFTEH J, FARSHAD A, GEORGE R. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics [J]. Geoderma, 2006, 130 (3, 4)}: 191–206.

    Article  Google Scholar 

  10. EDITION S, BUOL S, SOUTHARD R, GRAHAM R C. Morphology and composition of soils [M]// Soil Genesis and Classification. 6th ed. 2011.

  11. NICHOLSON G A, BIENIAWSKI Z T. A nonlinear deformation modulus based on rock mass classification [J]. International Journal of Mining & Geological Engineering, 1990, 8(3): 181–202.

    Article  Google Scholar 

  12. LIU R H, GRODZINSKI P, YANG J, LENIGK R. Self-contained, fully integrated biochips for sample preparation, PCR amplification and DNA microarray analysis [M]// Integrated Biochips for DNA Analysis. 2007.

  13. HAYES T, HASTON K, TSUI M. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence [J]. Environmental Health Perspectives, 2003, 111(4): 568–575.

    Article  Google Scholar 

  14. SIVAKUGAN N, DAS B M, LOVISA J. Determination of c and φ of rocks from indirect tensile strength and uniaxial compression tests [J]. International Journal of Geotechnical Engineering, 2014, 8(1): 59–65.

    Article  Google Scholar 

  15. NICKS J, ADAMS M. Large-scale direct shear testing of common open-graded aggregates [C]// Geo Congress, 2014.

  16. TERZAGHI K, PECK R B, MESRI G. Soil mechanics in engineering practice [M]. John Wiley & Sons, 1996.

  17. CHU J, BO M W, CHANG M. Consolidation and permeability properties of Singapore marine clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(9): 724–732.

    Article  Google Scholar 

  18. ARNOLD P. Manual of soil laboratory testing. Vol. 2. Permeability, shear strength and compressibility tests [J]. Geofisica International, 1995, 65: 339–340.

    Google Scholar 

  19. MCCARTNEY J S, ZORNBERG J G. Centrifuge permeameter for unsaturated soils. II: Measurement of the hydraulic characteristics of an unsaturated clay [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(8): 1064–1076.

    Article  Google Scholar 

  20. LEFEBVRE G M B, PHILIBERT A, HORNYCH P. Evaluating Ko in champlain clays with hydraulic fracture tests [J]. Canadian Geotechnical Journal, 1991, 28(3): 365–377.

    Article  Google Scholar 

  21. ALAOUI A, LIPIEC J, GERKE H H. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective [J]. Soil & Tillage Research, 2011, 115(5): 1–15.

    Article  Google Scholar 

  22. VINCENT M, PLAT E, LE ROY S. Cartographie de l’aléa retrait-gonflement et plans de prévention des risques [J]. Revue Française de Géotechnique, 2007, 120–121: 189–200. (in France)

    Article  Google Scholar 

  23. GHASABKOLAEI N, CHOOBBASTI A J, ROSHAN N. Geotechnical properties of the soils modified with nanomaterials: A comprehensive review [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 639–650.

    Article  Google Scholar 

  24. AMŠIEJUS J, DIRGĖLIENĖ N, NORKUS A. Comparison of sandy soil shear strength parameters obtained by various construction direct shear apparatuses [J]. Archives of Civil and Mechanical Engineering, 2014, 14(2): 327–334.

    Article  Google Scholar 

  25. MŁYNAREK Z, GOGOLIK S, PÓŁTORAK J. The effect of varied stiffness of soil layers on interpretation of CPTU penetration characteristics [J]. Archives of Civil and Mechanical Engineering, 2012, 12(2): 253–264.

    Article  Google Scholar 

  26. SNETHEN D R. Characterization of expansive soils using soil suction data [C]// American Society of Civil Engineers Amsterdam: ASCE. 1980: 54–75.

    Google Scholar 

  27. LYTTON R L. Foundations on expansive soils [M]. Elsevier Science Publishers B. V, 1988.

  28. MOUROUX P, MARGRON P, PINTE J C. La construction économique sur sols gonflants [M]. Editions du Bureau de Recherches Geologiques et Mineres, 1988: 14. (in France)

  29. AL-RAWAS A A, MCGOWN A. Microstructure of Omani expansive soils [J]. Canadian Geotechnical Journal, 1999, 36(2): 272–290.

    Article  Google Scholar 

  30. DJEDID A, BEKKOUCHE A, MAMOUNE S M A. Identification et prévision du gonflement de quelques sols de la région de Tlemcen (Algérie) [J]. Bulletin-Laboratoires des Ponts et Chaussées, 2001, 233(4375): 67–76.

    Google Scholar 

  31. KAZMIERCZAK J B, MAISON T, LAOUAFA F. Un nouveau dispositif pour la caractérisation du retrait et du gonflement des sols argileux [J]. Revue Française de Géotechnique, 2016(147): 1. (in France)

  32. TRAN T D. Rôle de la microstructure des sols argileux dans les processus de retrait-gonflement: de l’échelle de l’éprouvette à l’échelle de la chambre environnementale [D]. Paris, ENMP, 2014.

    Google Scholar 

  33. KIKI T, CISSÉ I, FAVRE J-L. Plans d’expériences pour la stabilisation d’une argile gonflante du Bénin [J]. Revue Française de Géotechnique, 2006(114): 33–41. (in France)

  34. ATTOH-OKINE N. Lime treatment of laterite soils and gravels-revisited [J]. Construction and Building Materials, 1995, 9(5): 283–287. (in France)

    Article  Google Scholar 

  35. MALLELA J, QUINTUS H V, SMITH K L. Consideration of lime-stabilized layers in mechanistic-empirical pavement design [R]. The National Lime Association, 2004, 200: 1–40. (in France)

    Google Scholar 

  36. LE RUNIGO B, CUISINIER O, CUI Y J. Impact of initial state on the fabric and permeability of a lime-treated salt under long-term leaching [J]. Canadian Geotechnical Journal, 2009, 46(11): 1243–1257. DOI: https://doi.org/10.1007/978-3-642-31116-1_5.

    Article  Google Scholar 

  37. LOCAT J, BERUBE M A, CHOQUETTE M. Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development [J]. Canadian Geotechnical Journal, 1990, 27(3): 294–304.

    Article  Google Scholar 

  38. LOCAT J, TREMBALY H, LEROUEIL S. Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime [J]. Canadian Geotechnical Journal, 1996, 33(4): 654–669.

    Article  Google Scholar 

  39. NALBANTOGLU Z, TUNCER E R. Compressibility and hydraulic conductivity of a chemically treated expansive clay [J]. Canadian Geotechnical Journal, 2001, 38(1): 154–160.

    Google Scholar 

  40. AL-MUKHTAR M, KHATTAB S, ALCOVER J F. Microstructure and geotechnical properties of lime-treated expansive clayey soil [J]. Engineering Geology, 2012, 139: 17–27.

    Article  Google Scholar 

  41. TRAN T D, CUI Y J, TANG A M. Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 399–404.

    Article  Google Scholar 

  42. BOARDMAN D, GLENDINNING S, ROGERS C. Development of stabilisation and solidification in lime-clay mixes [J]. Geotechnique, 2001, 51(6): 533–543.

    Article  Google Scholar 

  43. LUO R, PROZZI J A. Combining geogrid reinforcement and lime treatment to control dry land longitudinal cracking [J]. Transportation Research Record, 2009, 2104(1): 88–96.

    Article  Google Scholar 

  44. PARSONS R L, JOHNSON C P, CROSS S A. Evaluation of soil modification mixing procedures [R]. Kansas Department of Transportation, 2001.

  45. ESTABRAGH A, RAFATJO H, JAVADI A. Treatment of an expansive soil by mechanical and chemical techniques [J]. Geosynthetics International, 2014, 21(3): 233–243.

    Article  Google Scholar 

  46. STOLTZ G, CUISINIER O, MASROURI F. Weathering of a lime-treated clayey soil by drying and wetting cycles [J]. Engineering Geology, 2014, 181: 281–289.

    Article  Google Scholar 

  47. CHINKUYU A J, KANWAR R S. Effect of lime application on the movement of atrazine and nitrate-nitrogen through undisturbed-saturated soil columns [J]. Water Air & Soil Pollution, 1999, 115(1–4): 371–384.

    Article  Google Scholar 

  48. OSINUBI K J, IJIMDIYA T S, NMADU I. Lime stabilization of black cotton soil using bagasse ash as admixture [J]. Advanced Materials Research, 2009, 62–64(2): 3–10.

    Article  Google Scholar 

  49. CHESHOMI A, ESHAGHI A, HASSANPOUR J. Effect of lime and fly ash on swelling percentage and Atterberg limits of sulfate-bearing clay [J]. Applied Clay Science, 2017, 135: 190–198.

    Article  Google Scholar 

  50. SAHOO J P, PRADHAN P K. Effect of lime stabilized soil cushion on strength behaviour of expansive soil [J]. Geotechnical & Geological Engineering, 2010, 28(6): 889–897.

    Article  Google Scholar 

  51. SIVAPULLAIAH P V, SRIDHARAN A, RAMESH H N. Strength behaviour of lime-treated soils in the presence of sulphate [J]. Canadian Geotechnical Journal, 2000, 37(6): 1358–1367.

    Article  Google Scholar 

  52. LITTLE D A, JR R B R, MARTENS D C. Lime-stabilized and chemically fixed sewage sludges as lime amendments [J]. Bioresource Technology, 1991, 37(1): 93–102.

    Article  Google Scholar 

  53. RAJASEKARAN G, RAO S N. The microstructure of lime-stabilized marine clay [J]. Ocean Engineering, 1997, 24(9): 867–878.

    Article  Google Scholar 

  54. TREMBLAY H, LEROUEIL S, LOCAT J. Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement [J]. Canadian Geotechnical Journal, 2001, 38(3): 567–579.

    Article  Google Scholar 

  55. RAO S M, SHIVANANDA P. Compressibility behaviour of lime-stabilized clay [J]. Geotechnical & Geological Engineering, 2005, 23(3): 309.

    Article  Google Scholar 

  56. JAWAD I T, TAHA M R, MAJEED Z H. Soil stabilization using lime: Advantages, disadvantages and proposing a potential alternative [J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 8(4): 510–520.

    Article  Google Scholar 

  57. AL-AMOUDI O S B, KHAN K, AL-KAHTANI N S. Stabilization of a Saudi calcareous marl soil [J]. Construction and Building Materials, 2010, 24(10): 1848–1854.

    Article  Google Scholar 

  58. THOMPSON M R. Deep-plow lime stabilization for pavement construction [J]. Journal of the Transportation Engineering Division, 1972, 98: 311–323.

    Google Scholar 

  59. PETRY T M, LITTLE D N. Review of stabilization of clays and expansive soils in pavements and lightly loaded structures—history, practice, and future [J]. Journal of Materials in Civil Engineering, 2002, 14(6): 447–460.

    Article  Google Scholar 

  60. ROGERS C D F, GLENDINNING S. Improvement of clay soils in situ using lime piles in the UK [J]. Engineering Geology, 1997, 47(3): 243–257.

    Article  Google Scholar 

  61. TEDESCO D V. Hydro-mechanical behaviour of lime-stabilised soils [D]. Universitã Degli Studi Di Cassino Facoltã Di Ingegneria, 2006.

  62. AL-KIKI I, AL-ZUBAYDI A, AL-ATALLA M. Compressive and tensile strength of fibrous clayey soil stabilized with lime [J]. AL Rafdain Engineering Journal, 2012, 20(2): 66–77.

    Google Scholar 

  63. VOLKOFF B. Carte pedologique de reconnaissance de la Republique populaire du Benin a 1/200,000; feuille d’ Abomey [M]. Travaux et Documents de l’ Office dela Recherche Scientifique et Technique Outre-Mer no. 66, 1976. (in France)

  64. GLODJI L A, BASCOU J, YESSOUFOU S. Relationships between deformation and magmatism in the Pan-African Kandi Shear Zone: Microstructural and AMS studies of Ediacaran granitoid intrusions in central Bénin (West Africa) [J]. Journal of African Earth Sciences, 2014, 97: 143–160. (in France)

    Article  Google Scholar 

  65. AFNOR N. 94-056. Sols: reconnaissance et essais. Analyse granulométrique: méthode par tamisage à sec [M] Normalisation Française, 1996. (in France)

  66. AFNOR NF 94-056. Sols: reconnaissance et essais. Analyse granulométrique: méthode par tamisage à sec après lavage [M]. Normalisation Française, 1992. (in France)

  67. AFNOR NF P94-093. Détermination des caractéristiques de compactage d’un sol, essai Proctor normale, essai Proctor modifié [M]. Normalisation Française, 1993: 14. (in France)

  68. AFNOR NF P94-051. Sols: reconnaissance et essai de détermination des limites d’Atterberg [M]. Normalisation Française, 1993: 15. (in France)

  69. AFNOR NF P94-114. Sols: reconnaissance et essais- essai de pénétration dynamique type A [M]. Normalisation Française, 1990. (in France)

  70. AFNOR NF P 94-071-1. Sols: reconnaissance et essais-Essai de cisaillement rectiligne à la boîte-Partie 1: cisaillement direct [M]. Normalisation Française, 1994. (in France)

  71. AFNOR NF P 94-090-1. Essai oedométrique — essai de compressibilité sur matériaux fins quasi saturés avec chargement par paliers [M]. Normalisation Française, 1997. (in France)

  72. AFNOR EN 13286-2. Mélanges traités et mélanges non traités aux liants hydrauliques-Partie 2: méthodes d’essai de détermination en laboratoire de la masse volumique de référence et de la teneur en eau-Compactage Proctor [M]. Normalisation Française, 2010. (in France)

  73. AFNOR EN 13286-50. Unbound and hydraulically bound mixtures-Part 50: Method for the manufacture of test specimens of hydraulically bound mixtures using Proctor equipment or vibrating table compaction [M]. Normalisation Française, 2004. (in France)

  74. AFNOR NF P94-078. Sols: reconnaissance et essais-Indice CBR après immersion. Indice CBR immédiat. Indice portant immédiat-Mesure sur échantillon compacté dans le moule CBR [M]. Normalisation Française, 1997. (in France)

  75. DAMS I C on L Dams F C on L, DEGOUTTE G. Petits barrages: recommandations pour la conception, la réalisation et le suivi [M]. Cemagref Editions, 1997. (in France)

  76. ASTM D3282-09. Standard practice for classification of soils and soil-aggregate mixtures for highway construction purposes [M]. West Conshohocken: ASTM International, PA, 2009.

    Google Scholar 

  77. DHOWIAN A W, EDIL T B. Consolidation behavior of peats [J]. Geotechnical Testing Journal, 1980, 3(3): 10.

    Article  Google Scholar 

  78. TAVENAS F, BRUCY M, MAGNAN J-P. Analyse critique de la théorie de consolidation unidimensionnelle de Terzaghi [J]. Revue Française de Géotechnique, 1979(7): 29–43. (in France)

  79. JAMES GLASTONBURY, FELL R. Geotechnical characteristics of large slow, very slow, and extremely slow landslides [J]. Revue Canadienne de Géotechnique, 2008, 45(7): 984–1005. (in France)

    Article  Google Scholar 

  80. GUETTOUCHE, SAID M. Modeling and risk assessment of landslides using fuzzy logic; Application on the slopes of the Algerian Tell (Algeria) [J]. Arabian Journal of Geosciences, 2013, 6(9): 3163–3173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quirin Engelbert Ayeditan Alaye.

Additional information

Foundation item: Project(41627801) supported by the National Major Scientific Instruments Development Project of China; Project(41430634) supported by the State Key Program of National Natural Science Foundation of China; Project(2016YJ004) supported by the Opening Fund for Innovation Platform of China; Project(2016G002-F) supported by the Technology Research and Development Plan Program of China Railway Corporation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaye, Q.E.A., Ling, Xz., Kiki Tankpinou, Y.S. et al. Enhancing performance of soil using lime and precluding landslide in Benin (West Africa). J. Cent. South Univ. 26, 3066–3086 (2019). https://doi.org/10.1007/s11771-019-4237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4237-x

Key words

关键词

Navigation