Skip to main content
Log in

Adsorption kinetics and thermodynamics of sodium butyl xanthate onto bornite in flotation

丁基钠黄药对斑铜矿浮选的吸附动力学和热力学研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, the effect of sodium butyl xanthate (NaBX) adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic. The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution (4×10−5 mol/L). The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation; it belonged to the multimolecular layer adsorption of Freundlich model; the maximum adsorption rate constant was 0.30 g/(10−6 mol·min), and the equilibrium adsorption capacity was 2.70×10−6 mol/g. Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption, and the adsorption products of NaBX on bornite surface were cupric butyl xanthate, ferric butyl xanthate and dixanthogen, which were confirmed by infrared spectrum measurements.

摘要

本文通过吸附动力学和热力学研究不同pH 条件下丁基钠黄药(NaBX)在斑铜矿表面的吸附对浮选的影响. 浮选试验表明在pH 值为9 时, 斑铜矿在NaBX 溶液(4×10−5 mol/L)中的浮选效果最佳. 通过吸附动力学试验表明NaBX 在斑铜矿的吸附符合第二动力学方程, 属于多分子层的Freundlich 模型, 最大吸附速率常数为0.30 g/(10−6 mol·min), 最大平衡吸附量为2.70×10−6 mol/g. 通过热力学计算的结果表明吸附过程是自发的化学吸附过程, 并通过红外光谱分析了表面产物为黄原酸铜、黄原酸铁和双黄药.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LANZ B, RUTHERFORD T F, TILTON J E. Subglobal climate agreements and energy-intensive activities: An evaluation of carbon leakage in the copper industry [J]. World Economy, 2013, 36(3): 254–279.

    Article  Google Scholar 

  2. ROBERTS M C. Metal use and the world economy [J]. Resources Policy, 1996, 22(3): 183–196.

    Article  Google Scholar 

  3. ROY S, DATTA A, REHANI S. Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures [J]. International Journal of Mineral Processing, 2015, 143: 43–49.

    Article  Google Scholar 

  4. LI Fang-xu, ZHONG Hu, XU Hai-feng. Flotation behavior and adsorption mechanism of α-hydroxyoctyl phosphinic acid to malachite [J]. Minerals Engineering, 2015, 71: 188–193.

    Article  Google Scholar 

  5. LUO Xi-mei, WANG Yun-fan, WEN Shu-ming, MA Ming-ze, SUN Chao-yao, YIN Wan-zhong, MA Ying-qiang. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores [J]. International Journal of Mineral Processing, 2016, 152: 1–6.

    Article  Google Scholar 

  6. LUO Xi-mei, YIN Wan-zhong, WANG Yun-fan, SUN Chuan-yao, MA Ying-qiang, LIU Jian. Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite [J]. Journal of Central South University, 2016, 23(1): 52–58.

    Article  Google Scholar 

  7. LEE K, ARCHIBALD D, MCLEAN J, REUTER M A. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors [J]. Minerals Engineering, 2009, 22(4): 395–401.

    Article  Google Scholar 

  8. VREUGDENHIL A J, FINCH J A, BUTLER I S. Analysis of alkylxanthate collectors on sulphide minerals and flotation products by headspace analysis gas-phase infrared spectroscopy (HAGIS) [J]. Minerals Engineering, 1999, 12(7): 745–756.

    Article  Google Scholar 

  9. KOWAL A, POMIANOWSKI A. Cyclic voltammetry of ethyl xanthate on a natural copper sulphide electrode [J]. Journal of Electroanalytical Chemistry, 1973, 46(2): 411–420.

    Article  Google Scholar 

  10. LOTTER N O, BRADSHAW D J. The formulation and use of mixed collectors in sulphide flotation [J]. Minerals Engineering, 2010, 23(11): 945–951.

    Article  Google Scholar 

  11. MUSTAFA S, HAMID A, NAEEM A. Xanthate adsorption studies on chalcopyrite ore [J]. International Journal of Mineral Processing, 2004, 74(1–4): 317–325.

    Article  Google Scholar 

  12. NAEEM A, ALI H, MUSTAFA S. Kinetics of xanthate sorption by copper sulphide (CuS) [J]. Journal-Chemical Society of Pakistan, 2008, 30(4): 517–520.

    Google Scholar 

  13. CHEN Xu-meng, PENG Yong-jun, BRADSHAW D. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding [J]. Minerals Engineering, 2014, 58(4): 64–72.

    Article  Google Scholar 

  14. HASEGAWA M. The practical application of shs for chalcopyrite flotation at Yaguki mill [J]. Resources Processing, 1969, 39: 21–25.

    Google Scholar 

  15. OWUSU C, ABREU S, SKINNER W. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures [J]. Minerals Engineering, 2014, 55(1): 87–95.

    Article  Google Scholar 

  16. MAIER G S, DOBIÁŠ B. 2-mercaptobenzothiazole and derivatives in the flotation of galena, chalcocite and sphalerite: A study of flotation, adsorption and microcalorimetry [J]. Minerals Engineering, 1997, 10(12): 1375–1393.

    Article  Google Scholar 

  17. QU Xiao-yan, XIAO Jing-jing, LIU Guang-yi, LI Sheng, ZHANG Zhi-yong. Investigation on the flotation behavior and adsorption mechanism of 3-hexyl-4-amino-1,2, 4-triazole-5-thione to chalcopyrite [J]. Minerals Engineering, 2016, 89: 10–17.

    Article  Google Scholar 

  18. HANGONE G, BRADSHAW D, EKMEKCI Z. Flotation of a copper sulphide ore from Okiep using thiol collectors and their mixtures [J]. Journal-South African Institute of Mining and Metallurgy, 2005, 105(3): 199–206.

    Google Scholar 

  19. MORENO-MEDRANO E D, CASILLAS N, CRUZ R. Adsorption study of sodium isopropyl xanthate on chalcopyrite [J]. ECS Transactions, 2013, 47(1): 69–75.

    Article  Google Scholar 

  20. LEPPINEN J O, BASILIO C I, YOON R H. In-situ FTIR study of ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential [J]. International Journal of Mineral Processing, 1989, 26 (3, 4)}: 259–274.

    Article  Google Scholar 

  21. MENDIRATTA N K. Kinetic studies of sulfide mineral oxidation and xanthate adsorption [J]. Dissertation Abstracts International, 2000, 61(6): 3236–3398.

    Google Scholar 

  22. MONTALTI M, FORNASIERO D, RALSTON J. Ultraviolet-visible spectroscopic study of the kinetics of adsorption of ethyl xanthate on pyrite [J]. Journal of Colloid & Interface Science, 1991, 143(91): 440–450.

    Article  Google Scholar 

  23. HO Y S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods [J]. Water Research, 2006, 40(1): 119–125.

    Article  Google Scholar 

  24. KWON K C, ROHRER R L, LAI R W. Floatabilities of treated coal in water at room temperature [J]. Separation Science & Technology, 1995, 30(7–9): 1997–2020.

    Article  Google Scholar 

  25. HELBIG C, BALDAUF H, MAHNKE J. Investigation of Langmuir monofilms and flotation experiments with anionic/cationic collector mixtures [J]. International Journal of Mineral Processing, 1998, 53(3): 135–144.

    Article  Google Scholar 

  26. NOVICH B E, RING TA. A predictive model for the alkylamine-quartz flotation system [J]. Langmuir, 1985, 1(6): 701–708.

    Article  Google Scholar 

  27. KHAN A A, SINGH R P. Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms [J]. Colloids & Surfaces, 1987, 24(1): 33–42.

    Article  Google Scholar 

  28. KILIÇ M, YAZICI H, SOLAK M. A comprehensive study on removal and recovery of copper(II) from aqueous solutions by NaOH-pretreated Marrubium globosum, ssp. globosum, leaves powder: Potential for utilizing the copper(II) condensed desorption solutions in agricultural applications [J]. Bioresource Technology, 2009, 100(7): 2130–2137.

    Article  Google Scholar 

  29. WANG Xiang-huai. Interfacial electrochemistry of pyrite oxidation and flotation: II. FTIR studies of xanthate adsorption on pyrite surfaces in neutral pH solutions [J]. Journal of Colloid & Interface Science, 1995, 171(2): 413–428.

    Article  Google Scholar 

  30. LEPPINEN J O. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals [J]. International Journal of Mineral Processing, 1990, 30 (3, 4)}: 245–263.

    Article  Google Scholar 

  31. ZHANG Ya-hui, CAO Zhao, SUN Chuan-yao. FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces [J]. Journal of Molecular Structure, 2013, 1048(11): 434–440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian-yu Sun  (孙乾予) or Wan-zhong Yin  (印万忠).

Additional information

Foundation item: Projects(51504053, 51374079) supported by the National Natural Science Foundation of China; Project(2015M571324) supported by the Postdoctoral Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Qy., Yin, Wz., Cao, Sh. et al. Adsorption kinetics and thermodynamics of sodium butyl xanthate onto bornite in flotation. J. Cent. South Univ. 26, 2998–3007 (2019). https://doi.org/10.1007/s11771-019-4231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4231-3

Key words

关键词

Navigation