Skip to main content
Log in

Preparation of low-temperature sintered high conductivity inks based on nanosilver self-assembled on surface of graphene

基于纳米银在石墨烯表面自组装制备低温固化高导电纳米银墨水

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Finer nanoplates of silver are prepared by self-assembly on the surface of graphene, and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared. Most importantly, graphene is added to the solution before the chemical reduction reaction occurs. Firstly, it is found that silver nanoplates have self-assembly phenomenon on the surface of graphene. Secondly, the Ag nano hexagonal platelets (AgNHPs) with small particle sizes (10 nm), narrow distribution and good dispersion are prepared. Especially, smaller sizes (10 nm) and narrower particle size distribution of AgNHPs particles can be easily controlled by using this process. Finally, the conductivity of the ink is excellent. For example, when the printed patterns were sintering at 150 °C, the resistivity of the ink(GE: 0.15 g/L) reached the minimum value of 2.2×10−6 Ω·cm. And the resistivity value was 3.7×10−6 Qcm, when it was sintered at 100 °C for 30 min. The conductive ink prepared can be used for the field of printing electronics as ink-jet printing ink.

摘要

采用石墨烯诱导, 制备出六角片状纳米银, 并最终制备出在低烧结温度下导电性能好的纳米银 墨水. 其中核心之处是将石墨烯以原料的方式提前加入反应液中制备纳米银颗粒. 研究发现, 制备过 程中纳米银颗粒在石墨烯表面具有自组装现象. 其次, 制备出的六角片状纳米银颗粒粒径小(10 nm)、 分布窄、分散性好. 特别是, 本文采用的制备粒径小、分布窄的纳米银片的工艺更容易控制, 更有利 于批量生产. 最后, 制备的石墨烯-纳米银混合导电墨水具有优良的导电性. 如, 当石墨烯含量为 0.15 g/L, 在150 °C 烧结后, 印刷制成的导电线路的电阻率达到最小值为2.2×106 Ω·cm. 在100 °C 烧 结30 min 后, 电阻率为3.7×106 Ω·cm. 制备的混合导电墨水可用于印刷电子喷墨打印领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NGE T T, NOGI M, SUGNUMA K. Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates [J]. Journal of Materials Chemistry C, 2013, 1(34): 5235–5243.

    Article  Google Scholar 

  2. XU L, LI H, XIA J, WANG L, XU H. Graphitic carbon nitride nanosheet supported high loading silver nanoparticle catalysts for the oxygen reduction reaction [J]. Materials Letters, 2014, 128(6): 349–353. DOI: https://doi.org/10.1016/j.matlet.2014.04.110.

    Google Scholar 

  3. PANDEY P A, BELL G R, ROURKE J P, WILSON N. Physical vapor deposition of metal nanoparticles on chemically modified graphene: Observations on metal-graphene interactions [J]. Small, 2011, 7(22): 3202–3210. DOI: https://doi.org/10.1002/smll.201101430.

    Article  Google Scholar 

  4. AN B, CAI X H, WU F S, WU Y P. Preparation of micro-sized and uniform spherical Ag powders by novel wet-chemical method [J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 1550–1554. DOI: https://doi.org/10.1016/S1003-6326(09)60337-X.

    Article  Google Scholar 

  5. JOHNSON H, AROCKIASAMY A, GANESAN S, KANNUSAMY M. A new approach for deposition of silver film from AgCl through successive ionic layer adsorption and reaction technique [J]. Journal of Central South University, 2017, 24: 2793–2798. DOI: https://doi.org/10.1007/s11771-017-3693-4.

    Article  Google Scholar 

  6. LIU P, MA J, DENG S, ZENG K, DENG D Y, XIE W, LU A X. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures [J]. Nanotechnology, 2016, 27: 385603. DOI: https://doi.org/10.1088/0957-4484/27/38/385603.

    Article  Google Scholar 

  7. CHI K, ZHANG Z, XI J, HUANG Y, XIAO F, WANG S, LIU Y. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor [J]. ACS Applied Materials & Interfaces, 2014, 6: 16312. DOI: https://doi.org/10.1039/C4TA02721C.

    Article  Google Scholar 

  8. XIAO F, YANG S X, ZHANG Z Y, LIU H F, XIAO J W, WAN L, LUO J, WANG S, LIU Y Q. Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor [J]. Scientific Reports, 2015, 5: 9359. DOI: https://doi.org/10.1038/srep09359.

    Article  Google Scholar 

  9. SUN Y G, XIA Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002, 298(5601): 2176–2179. DOI: https://doi.org/10.1126/science.1077229.

    Article  Google Scholar 

  10. GAO Y, JIANG P, SONG L, WANG J X, LIU L F, LIU D F, XIANG Y J, ZHANG Z X, ZHAO X W, DOU X Y, LUO S D, ZHOU W Y, XIE S S. Studies on silver nanodecadrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction [J]. Journal of Crystal Growth, 2006, 289: 376–380. DOI: https://doi.org/10.1016/j.jcrysgro.2005.11.123.

    Article  Google Scholar 

  11. WILEY B J, XIONG Y J, LI Z Y, Y Y D, XIA Y N. Right bipyramids of silver: A new shape derived from single twinned seeds [J]. Nano Lett, 2006, 6: 765–768. DOI: https://doi.org/10.1021/nl060069q.

    Article  Google Scholar 

  12. GILBERTSON L M, ZIMMERMAN J B, PLATA D L, HUTCHISON J E, ANASTAS P T. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the principles of green chemistry [J]. Journal of Materials Chemistry C, 2015, 44: 5758–5777. DOI: https://doi.org/10.1039/c4cs00445k.

    Google Scholar 

  13. ISABEL P S, LUIS M L M. Synthesis of silver nanoprisms in DMF [J]. Nano Letters, 2002, 2(8): 903–905. DOI: https://doi.org/10.1021/nl025638i.

    Article  Google Scholar 

  14. BAI L, MA X J, LIU J F, SUN X M, ZHAO D Y, EVANS D G. Rapid separation and purification of nanoparticles in organic density gradients [J]. Journal of the American Chemical Society, 2010, 132(7): 2333–2340. DOI: https://doi.org/10.1021/ja908971d.

    Article  Google Scholar 

  15. LIU P, TANG Q Z, LIU H, LU A X. Low electrical resistivity of graphene-AgNHPs based ink with a new processing method [J]. RSC Advances, 2017, 7: 15228–15235. DOI: https://doi.org/10.1039/c7ra00309a.

    Article  Google Scholar 

  16. XU Z, GAO H, HU G. Solution-based synthesis and characterization of a silver nanoparticle-graphene hybrid film [J]. Carbon, 2011, 49: 4731–4738. DOI: https://doi.org/10.1016/j.jcis.2011.05.009.

    Article  Google Scholar 

  17. LIU Y, CHANG Q, HUANG L. Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires [J]. Journal of Materials Chemistry C, 2013, 1: 2970–2974. DOI: https://doi.org/10.1039/C3TC30178H.

    Article  Google Scholar 

  18. NERSISYAN H H, LEE J H, SON H T, WON C W, MAENG D Y. A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion [J]. Materials Research Bulletin, 2003, 38(6): 949–956. DOI: https://doi.org/10.1016/S0025-5408(03)0078-3.

    Article  Google Scholar 

  19. CHUN K Y, OH Y, RHO J, AHN J H, KIM Y J, CHOI H R, BAIK S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver [J]. Nature Nanotechnology, 2010, 5: 853–857. DOI: https://doi.org/10.1038/NNANO.2010.232.

    Article  Google Scholar 

  20. CHARCOSSET C, KIEFFER R, MANGIN D, PUEL F. Coupling between membrane processes and crystallization operations [J]. Industrial & Engineering Chemistry Research, 2010, 49(12): 5489–5495. DOI: https://doi.org/10.1021/ie901824x.

    Article  Google Scholar 

  21. KIM T Y, KWON S W, PARK S J, YOON D H, SUH K S, YANG W S. Self-organized graphene patterns [J]. Advanced Materials, 2011, 23: 2734–2738. DOI: https://doi.org/10.1002/adma.201100329.

    Article  Google Scholar 

  22. KIM Y H, YOO B, ANTHONY J E, PARK S K. Controlled deposition of a high performance small molecule organic single crystal transistor array by direct ink jet printing [J]. Advanced Materials, 2012, 24(4): 497–502. DOI: https://doi.org/10.1002/adma.201103032.

    Article  Google Scholar 

  23. HE Yuan, LIU Yun-guo. Direct fabrication of highly porous grapheme/TiO2 composite nanofibers by electrospinning for photocatalytic application [J]. Journal of Central South University, 2018, 25: 2182–2189. DOI: https://doi.org/10.1007/s11771-018-3906-5.

    Article  Google Scholar 

  24. ZHANG L, LIU H, ZHAO Y, SUN X, WEN Y, GUO Y, GAO X, DI C, YU G, LIU Y. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography [J]. Advanced Materials, 2012, 24(3): 436–440. DOI: https://doi.org/10.1002/adma.201103620.

    Article  Google Scholar 

  25. LIU J H, HU Y, ZHANG Y W, CHEN W. Graphenestabilized silver nanoparticle electrochemical electrode for actuator design [J]. Advanced Materials, 2013, 25: 1270–1274. DOI: https://doi.org/10.1002/adma.201203655.

    Article  Google Scholar 

  26. BADAWY A M E, LUXTON T P, SILVA R G, SCHECKEL K G, SUIDAN M T, TOLAYMAT T M. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions [J]. Environmental Science & Technology, 2010, 44(4): 1260–1266. DOI: https://doi.org/10.1021/es902240k.

    Article  Google Scholar 

  27. DONG X Y, GAO Z W, YANG K F, ZHANG W Q, XU L W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals [J]. Journal of Materials Chemistry, 2015, 5: 2554–2574. DOI: https://doi.org/10.1039/C5CY00285K.

    Google Scholar 

  28. LU G, LI H, LIUSMAN C, YIN Z, WU S, ZHANG H. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules [J]. Chemical Science, 2011, 2: 1817–1821. DOI: https://doi.org/10.1039/C1SC00254F.

    Article  Google Scholar 

  29. LEE J, SHIM S, KIM B, SHIN H S. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles [J]. Chemistry-A European Journal, 2011, 17: 2381–2387. DOI: https://doi.org/10.1002/chem.201002027.

    Article  Google Scholar 

  30. ISRAELACHVILI J. Intermolecular & surface force [M]. London: Academic Press, 1997.

    Google Scholar 

  31. XU Y X, WU Q, SUN Y, BAI H, SHI G. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels [J]. ACS Nano, 2010, 4(10): 7358–7362. DOI: https://doi.org/10.1021/nn1027104.

    Article  Google Scholar 

  32. SCHWEINSBERG D P, HOPE G A, TRUEMAN A, OTIENO-ALEGO V. An electrochemical and SERS study of the action of polyvinylpyrrolidone and polyethylenimine as inhibitors for copper in aerated H2SO4 [J]. Corrosion Science, 1996, 38(4): 587–599.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-xian Lu  (卢安贤).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., He, Wq. & Lu, Ax. Preparation of low-temperature sintered high conductivity inks based on nanosilver self-assembled on surface of graphene. J. Cent. South Univ. 26, 2953–2960 (2019). https://doi.org/10.1007/s11771-019-4227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4227-z

Key words

关键词

Navigation