Skip to main content
Log in

Inverse Stone-Thrower-Wales defect and transport properties of 9AGNR double-gate graphene nanoribbon FETs

逆 Stone-Thrower-Wales 缺陷和9AGNR 双栅石墨烯纳米带FET 的传输特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and symmetry of the ISTW defect on the performance of low dimensional 9AGNR double-gate graphene nanoribbon FET (DG-GNRFET) is investigated. Analyzing the transmission spectra, density of states and current-voltage characteristics shows that the defect effect on the electron transport is considerably varied depending on the positions and the orientations (the symmetric and asymmetric configuration) of the ISTW defect in the channel length. Based on the results, the asymmetric ISTW defect leads to a more controllability of the gate voltages over drain current, and drain current increases more than 5 times. The results have also confirmed the ISTW defect engineering potential on controlling the channel electrical current of DG-AGNR FET.

摘要

基于缺陷的碳纳米结构工程正在成为改变石墨烯纳米带FET 中电子传输性质的重要且有效的 方法. 本文研究了ISTW 缺陷的位置和对称性对低维9NR 双栅石墨烯纳米带FET(DG-GNRFET)性能 的影响. 分析透射光谱和态密度和电流−电压特性表明,, 对电子传输的缺陷影响根据ISTW 缺陷在沟 道长度中的位置和取向(对称和非对称配置)而显着变化. 基于该结果, 非对称ISTW 缺陷导致栅极电 压对漏极电流的可控性更强, 并且漏极电流增加超过5 倍. 结果还证实了ISTW 在控制DG-AGNR FET 的沟道电流方面的缺陷工程潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nat Mater, 2007, 6: 183–191.

    Article  Google Scholar 

  2. HE Y, LIU Y G. Direct fabrication of highly porous graphene/TiO2 composite nanofibers by electrospinning for photocatalytic application [J]. Journal of Central South University, 2018, 25(9): 2182–2189.

    Article  Google Scholar 

  3. BALANDIN A A, GHOSH S, BAO W, CALIZO I, TEWELDEBRHAN D, MIAO F, LAU C N. Superior thermal conductivity of single-layer graphene [J]. Nano Lett, 2008, 8: 902–907.

    Article  Google Scholar 

  4. WU Z T, HU F Y, ZHANG Y, GAO Q, CHEN Z P. Mechanical analysis of double-layered circular graphene sheets as building material embedded in an elastic medium [J]. Journal of Central South University, 2017, 24(11): 2717–2724.

    Article  Google Scholar 

  5. CHEN J H, JANG C, XIAO S, ISHIGAMI M, FUHRER M S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. Nat Nanotechnol, 2008, 3: 206–209.

    Article  Google Scholar 

  6. HAQUE A M, KWON S, KIM J, NOH J, HUH S, CHUNG H, JEONG H. An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes [J]. Journal of Central South University, 2015, 22(8): 3202–3210.

    Article  Google Scholar 

  7. SCHWIERZ F. Graphene transistors: Status, prospects, and problems [J]. Proc IEEE, 2013, 101: 1567–1584.

    Article  Google Scholar 

  8. HUANG C H, SU C Y, OKADA T, LI L J, HO K I, LI P W, CHEN I H, CHOU C, LAI C S, SAMUKAWA S. Ultra-low-edge-defect graphene nanoribbons patterned by neutral beam [J]. Carbon, 2013, 61: 229–235.

    Article  Google Scholar 

  9. NI Z H, YU T, LU Y H, WANG Y Y, FENG Y P, SHEN Z X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening [J]. ACS Nano, 2008, 2: 2301–2305.

    Article  Google Scholar 

  10. ZHANG Y, TANG T T, GIRIT C, HAO Z, MARTIN M C, ZETTL A, CROMMIE M F, SHEN Y R, WANG F. Direct observation of a widely tunable bandgap in bilayer graphene [J]. Nature, 2009, 459: 820–823.

    Article  Google Scholar 

  11. TERRONES M, BOTELLO-MÉNDEZ A R, CAMPOSDELGADO J, LÓPEZ-URÍAS F, VEGA-CANTÚ Y I, RODRÍGUEZ-MACÍAS F J, ELÍAS A L, MUNOZ-SANDOVAL E, CANO-MÁRQUEZ A G, CHARLIER J C, TERRONES H. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications [J]. Nano Today, 2010, 5: 351–372.

    Article  Google Scholar 

  12. CARR L D, LUSK M T. Defect engineering: Graphene gets designer defects [J] Nat Nanotechnol, 2010, 5: 316–317.

    Article  Google Scholar 

  13. XU H, ZHANG D, CHEN L. Effect of defect on electronic properties of zigzag graphene nanoribbons [J]. Journal of Central South University (Science and Technology), 2012, 43(9): 3510–3516. (in Chinese)

    Google Scholar 

  14. BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene [J]. ACS Nano, 2011, 5: 26–41.

    Article  Google Scholar 

  15. VICARELLI L, HEEREMA S J, DEKKER C, ZANDBERGEN H W. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices [J]. ACS Nano, 2015, 9: 3428–3435.

    Article  Google Scholar 

  16. OWLIA H, KESHAVARZI P. Locally defect-engineered graphene nanoribbon field-effect transistor [J]. IEEE Trans Electron Dev, 2016, 63: 3769–3775.

    Article  Google Scholar 

  17. LUSK M T, WU D T, CARR L D. Graphene nanoengineering and the inverse Stone-Thrower-Wales defect [J]. Phys Rev B, 2010, 81: 155444.

    Article  Google Scholar 

  18. LUSK M T, CARR L D. Nanoengineering defect structures on graphene, [J]. Phys Rev Lett, 2008, 100: 175503.

    Article  Google Scholar 

  19. ORLIKOWSKI D, NARDELLI M B, BERNHOLC J, ROLAND C. Ad-dimers on strained carbon nanotubes: A new route for quantum dot formation [J]. Phys Rev Lett, 1999, 83: 4132–4135.

    Article  Google Scholar 

  20. SGOUROS A, SIGALAS M M, PAPAGELIS K, KALOSAKAS G. Transforming graphene nanoribbons into nanotubes by use of point defects [J]. J Phys Condens Matt, 2014, 26: 125301.

    Article  Google Scholar 

  21. APPELHANS D J, CARR L D, LUSK M T. Embedded ribbons of graphene allotropes: An extended defect perspective [J]. New J Phys, 2010, 12: 125006.

    Article  Google Scholar 

  22. LUSK M T, CARR L D. Creation of graphene allotropes using patterned defects [J]. Carbon, 2009, 47: 2226–2232.

    Article  Google Scholar 

  23. VALENCIA F, ROMERO A H, JESCHKE H O, GARCIA M E. Large-amplitude coherent phonons and inverse Stone-Wales transitions in graphitic systems with defects interacting with ultrashort laser pulses [J]. Phys Rev B, 2006, 74: 075409.

    Article  Google Scholar 

  24. RAMASSE Q M, KEPAPSTOGLOU, D M, HAGE F S, SUSI T, KOTAKOSKI J, MANGLER C, ZAN R. Atom-by-atom STEM investigation of defect engineering in graphene [J]. Micros Microanal, 2014, 20: 1736–1737.

    Article  Google Scholar 

  25. LEHTINEN O, VATS N, ALGARA-SILLER G, KNYRIM P, KAISER U. Implantation and atomic-scale investigation of self-interstitials in graphene [J]. Nano Lett, 2015, 15: 235–241.

    Article  Google Scholar 

  26. ZAN R, RAMASSE Q M, BANGERT U, NOVOSELOV K S. Graphene reknits its holes [J]. Nano Lett, 2012, 12: 3936–3940.

    Article  Google Scholar 

  27. YANG B, BOSCOBOINIK J A, YU X, SHAIKHUTDINOV S, FREUND H. Patterned defect structures predicted for graphene are observed on single-layer silica films [J]. Nano Lett, 2013, 13: 4422–4427.

    Article  Google Scholar 

  28. PEREIRA V M, GUINEA F, DOS SANTOS J L, PERES N M R, NETO A C. Disorder induced localized states in graphene [J]. Phys Rev Lett, 2006, 96: 036801.

    Article  Google Scholar 

  29. LA MAGNA A, DERETZIS I, FORTE G, PUCCI R. Conductance distribution in doped and defected graphene nanoribbons [J]. Phys Rev B, 2009, 80: 195413.

    Article  Google Scholar 

  30. GORJIZADEH N, FARAJIAN A A, KAWAZOE Y. The effects of defects on the conductance of graphene nanoribbons [J]. Nanotechnology, 2009, 20: 015201.

    Article  Google Scholar 

  31. IHNATSENKA S, KIRCZENOW G. Conductance quantization in strongly disordered graphene ribbons [J]. Phys Rev B, 2009, 80: 201407.

    Article  Google Scholar 

  32. NAZARI A, FAEZ R, SHAMLOO H. Improving I on/I off and sub-threshold swing in graphene nanoribbon field-effect transistors using single vacancy defects [J]. Suplattices Microstruct, 2015, 86: 483–492.

    Article  Google Scholar 

  33. MA J, ALFE D, MICHAELIDES A, WANG E. Stone-Wales defects in graphene and other planar sp2-bonded materials [J]. Phys Rev B, 2009, 80: 033407.

    Article  Google Scholar 

  34. BHOWMICK S, WAGHMARE U V. Anisotropy of the Stone-Wales defect and warping of graphene nanoribbons: A first-principles analysis [J]. Phys Rev B, 2010, 81: 155416.

    Article  Google Scholar 

  35. REN Y, CHEN K Q. Effects of symmetry and Stone-Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons [J]. J Appl Phys, 2010, 107: 044514.

    Article  Google Scholar 

  36. ZHAO J, ZENG H, LI B, WEI J, LIANG J. Effects of Stone-Wales defect symmetry on the electronic structure and transport properties of narrow armchair graphene nanoribbon [J]. J Phys Chem Solids, 2015, 77: 8–13.

    Article  Google Scholar 

  37. OKADA S, KAWAI T, NAKADA K. Electronic structure of graphene with a topological line defect [J]. J Phys Soc Jpn, 2011, 80: 013709.

    Article  Google Scholar 

  38. FOTOOHI S, MORAVVEJ-FARSHI M K, FAEZ R. Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers [J]. Appl Phys A, 2014, 116: 2057–2063.

    Article  Google Scholar 

  39. FOTOOHI S, MORAVVEJ-FARSHI M K, FAEZ R. Role of 3D-paired pentagon-heptagon defects in electronic and transport properties of zigzag graphene nanoribbons [J]. Appl Phys A, 2014, 116: 295–301.

    Article  Google Scholar 

  40. OWLIA H, KESHAVARZI P. A bilayer graphene nanoribbon field-effect transistor with a dual-material gate [J]. Mater Sci Semicond Proc, 2015, 39: 636–640.

    Article  Google Scholar 

  41. DATTA S. Nanoscale device modeling: The Green’s function method [J]. Suplattices Microstruct, 2000, 28: 253–278.

    Article  Google Scholar 

  42. DATTA S. Electronic transport in mesoscopic systems [M]. Cambridge: Cambridge University Press, 1997.

    Google Scholar 

  43. DUTTA P, MAITI S K, KARMAKAR S N. Positional dependence of energy gap on line defect in armchair graphene nanoribbons: Two-terminal transport and related issues [J]. J Appl Phys, 2013, 114: 034306.

    Article  Google Scholar 

  44. NADERI A. Theoretical analysis of a novel dual gate metal-graphene nanoribbon field effect transistor [J]. Mater Sci Semicond Proc, 2015, 31: 223–228.

    Article  Google Scholar 

  45. NADERI A. Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions [J]. J Comput Electron, 2016, 15: 347–357.

    Article  Google Scholar 

  46. AL-DIRINI F, HOSSAIN F M, NIRMALATHAS A, SKAFIDAS E. All-graphene planar double barrier resonant tunneling diodes [J]. IEEE J Electron Devices Soc, 2014, 2: 118–122.

    Article  Google Scholar 

  47. SOLS F, GUINEA F, NETO A H C. Coulomb blockade in graphene nanoribbons [J]. Phys Rev Lett, 2007, 99: 166803.

    Article  Google Scholar 

  48. SAJJAD R N, GHOSH A W. Manipulating chiral transmission by gate geometry: Switching in graphene with transmission gaps [J]. ACS Nano, 2013, 7: 9808–9813.

    Article  Google Scholar 

  49. POLJAK M, SONG E B, WANG M, SULIGOJ T, WANG K L. Influence of edge defects, vacancies, and potential fluctuations on transport properties of extremely scaled graphene nanoribbons [J]. IEEE Trans Electron Dev, 2012, 59: 3231.

    Article  Google Scholar 

  50. CHEN J H, JANG C, XIAO S, ISHIGAMI M, FUHRER M S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. Nat Nanotechnol, 2008, 3: 206.

    Article  Google Scholar 

  51. KVASHNIN D G, CHERNOZATONSKII L A. Impact of symmetry in transport properties of graphene nanoribbons with defects [J]. Appl Phys Lett, 2014, 105: 083115.

    Article  Google Scholar 

  52. WANG Z F, LI Q, SHI Q W, WANG X, YANG J, HOU J G, CHEN J. Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: A theoretical study [J]. Appl Phys Lett, 2008, 92: 133114.

    Article  Google Scholar 

  53. DO V N, DOLLFUS P. Negative differential resistance in zigzag-edge graphene nanoribbon junctions [J]. J Appl Phys, 2011, 107: 063705.

    Google Scholar 

  54. REN H, LI Q X, LUO Y, YANG J. Graphene nanoribbon as a negative differential resistance device [J]. Appl Phys Lett, 2009, 94: 173110.

    Article  Google Scholar 

  55. NGUYEN V H, MAZZAMUTO F, SAINT-MARTIN J, BOURNEL A, DOLLFUS P. Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions [J]. Appl Phys Lett, 2011, 99: 042105.

    Article  Google Scholar 

  56. FIORI G. Negative differential resistance in mono and bilayer graphene p-n junctions [J]. IEEE Electron Dev Lett, 2011, 32: 1334.

    Article  Google Scholar 

  57. HABIB K M M, ZAHID F, LAKE R K. Negative differential resis-tance in bilayer graphene nanoribbons [J]. Appl Phys Lett, 2011, 98: 192112.

    Article  Google Scholar 

  58. NGUYEN V H, MAZZAMUTO F, SAINT-MARTIN J, BOURNEL A, DOLLFUS P. Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect [J]. Nanotechnology, 2012, 23: 065201.

    Article  Google Scholar 

  59. FERREIRA G J, LEUENBERGER M N, LOSS D, EGUES J C. Low-bias negative differential resistance in graphene nanoribbon superlattices [J]. Phys Rev B, 2011, 84: 125453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Keshavarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrollahnejad, M.B., Keshavarzi, P. Inverse Stone-Thrower-Wales defect and transport properties of 9AGNR double-gate graphene nanoribbon FETs. J. Cent. South Univ. 26, 2943–2952 (2019). https://doi.org/10.1007/s11771-019-4226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4226-0

Key words

关键词

Navigation