Skip to main content
Log in

A general analytical approach to reach maximum grid support by PMSG-based wind turbines under various grid faults

一种永磁同步风力发电机在电网故障下达到最大限度电网支持的通用分析方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel fault ride-through strategy for wind turbines, based on permanent magnet synchronous generator, has been proposed. The proposed strategy analytically formulates the reference current signals, disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss. All this has been reached by taking the grid-side converter’s phase current limit into account. The strategy is compatible with different countries’ grid codes and prevents pulsating active power injection, in an unbalanced grid condition. Model predictive current controller is applied to handling rapid transients. During faults, the energy storage system maintains DC-link voltage, which causes voltage fluctuations to be eliminated, significantly. A fault ride-through strategy was proposed for PMSG-based wind turbines, neglecting fault characteristics, second, reaching maximum possible grid support in faulty grid conditions, while avoiding over-current and third, considerable reduction in energy storage system size and power rating. Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.

摘要

提出了一种基于永磁同步发电机的风力发电机故障共线策略。该策略不考虑电网故障类型,对 参考电流信号进行了解析计算,并利用整个系统的容量来注入电网编码所需的无功电流,传输最大可 能的有功功率以支持电网频率,避免发电损耗。所有这些都是通过考虑电网侧变换器的相电流限制而 实现的。该策略适用于不同国家的电网编码,在电网不平衡的情况下,防止了脉动有功功率的注入。 模型预测电流控制器用于处理快速瞬变。在故障期间,储能系统保持DC 连接电压,显著消除电压波 动。本文提出了一种基于永磁同步电机的风电机组故障共乘策略,忽略了故障特性;其次,在电网故 障的情况下达到最大可能的电网支持,同时避免过电流;第三,大幅度降低储能系统的规模和额定功 率。通过MATLAB/SIMULINK 仿真,验证了该方法的可行性和竞争力,并对整个控制系统的效率进 行了仿真。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ARANI M F M, MOHAMED Y A I. Assessment and enhancement of a full-Scale PMSG-based wind power generator performance under faults [J]. IEEE Transactions on Energy Conversion, 2016, 31(2): 728–739. DOI: 10.1109/ TEC.2016.2526618.

    Article  Google Scholar 

  2. NASIRI M, MOHAMMADI R. Peak current limitation for grid side inverter by limited active power in PMSG-based wind turbines during different grid faults [J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 3–12. DOI: 10.1109/TSTE.2016.2578042.

    Article  Google Scholar 

  3. YASSIN H M, HANAFY H H, HALLOUDA M M. Enhancement low-voltage ride through capability of permanent magnet synchronous generator-based wind turbines using interval type-2 fuzzy control [J]. IET Renewable Power Generation, 2016, 10(3): 339–348. DOI: 10.1049/iet-rpg.2014.0453.

    Article  Google Scholar 

  4. GAO Q, CAI X, GUO X, MENG R. Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade [J]. Journal of Central South University, 2018, 25(7): 1746–1754. DOI: 10.1007/s11771-018-3865-x.

    Article  Google Scholar 

  5. RAVADANEGH S N, OSKUEE M R J, KARIMI M. Multi-objective planning model for simultaneous reconfiguration of power distribution network and allocation of renewable energy resources and capacitors with considering uncertainties [J]. Journal of Central South University, 2017, 24(8): 1837–1849. DOI: 10.1007/s11771-017-3592-8.

    Article  Google Scholar 

  6. HANSEN A D, MICHALKE G. Multi-pole permanent magnet synchronous generator wind turbines’ grid support capability in uninterrupted operation during grid faults [J]. IET Renewable Power Generation, 2009, 3(3): 333–348. DOI: 10.1049/iet-rpg.2008.0055.

    Article  Google Scholar 

  7. Grid Code. High and Extra High Voltage [M]. Germany: E.ON Netz GmbH, Bayreuth, 2006.

    Google Scholar 

  8. TEODORESCU R, LISERRE M, RODRIGUEZ P. Grid converters for photovoltaic and wind power systems [M]. New Jersy: Wiley-IEEE Press, 2011.

    Book  Google Scholar 

  9. ANDERSON P M. Analysis of faulted power systems [M]. New York: USA, IEEE Press, 1995.

    Google Scholar 

  10. GOKSU O, TEOSORESCU R, BAK C L, IOV F, KJAER P C. Impact of wind power plant reactive current injection during asymmetrical grid faults [J]. IET Renewable Power Generation, 2013, 7(5): 484–492. DOI: 10.1049/iet-rpg. 2012.0255.

    Article  Google Scholar 

  11. KIM K H, JEUNG Y C, LEE D C, KIM H G. LVRT scheme of PMSG wind power systems based on feedback linearization [J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2376–2384. DOI: 10.1109/TPEL.2011.2171999.

    Article  Google Scholar 

  12. GENG H, YANG G, XU D, WU B. Unified power control for PMSG-based WECS operating under different grid conditions [J]. IEEE Transactions on Energy Conversion, 2011, 26(3): 822–830. DOI: 10.1109/TEC.2011.2127478.

    Article  Google Scholar 

  13. NGUYEN T H, LEE D C. Advanced fault ride-through technique for PMSG wind turbine systems using line-side converter as STATCOM [J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2842–2850. DOI: 10.1109/ TIE.2012.2229673.

    Article  Google Scholar 

  14. UEHARA A, PRATAP A, GOYA T, SENJYU T, YONA A, ARASAKI N, FUNABASHI T. A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS [J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 550–558. DOI: 10.1109/TEC.2011.2107912.

    Article  Google Scholar 

  15. IEEE Standard 2030.2. Interoperability of energy storage systems integrated with the electric power infrastructure [S]. 2015.

    Google Scholar 

  16. XU G, XU L, MORROW J. Power oscillation damping using wind turbines with energy storage [J]. IET Renewable Power Generation, 2013, 7(5): 1–8. DOI: 10.1049/iet-rpg.2012. 0019.

    Article  Google Scholar 

  17. ALEPUZ S, BUSQUETS-MONGE S, BORDONAU J, MARTINEZ-VELASCO J A, SILVA C A, PONTT J, RODRIGUEZ J. Control strategies based on symmetrical components for grid-connected converters under voltage dips [J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 2162–2173. DOI: 10.1109/TIE.2009.2017102.

    Article  Google Scholar 

  18. SHABESTARY M M, MOHAMED Y A I. An analytical method to obtain maximum allowable grid support by using grid-connected converters [J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1558–1571. DOI: 10.1109/TSTE.2016.2569022.

    Article  Google Scholar 

  19. SHIN D, LEE K, LEE J, YOO D W, KIM H J. Implementation of fault ride-through techniques of grid-connected inverter for distributed energy resources with adaptive low-pass notch PLL [J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2859–2871. DOI: 10.1109/TPEL.2014.2378792.

    Article  Google Scholar 

  20. CALLE-PRADO A, ALEPUZ S, BORDONAU J, NICOLAS-APRUZZESE J, CORTES P, RODRIGUEZ J. Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements [J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1503–1514. DOI: 10.1109/TIE.2014.2364459.

    Article  Google Scholar 

  21. JUNYENT-FERRE A, GOMIS-BELLMUNT O, GREEN T C, SOTO-SANCHEZ D E. Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags [J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3744–3753. DOI: 10.1109/TPEL.2011.2167761.

    Article  Google Scholar 

  22. MOAWWAD A, EL-MOURSI M S, XIAO W. A novel transient control strategy for VSC-HVDC connecting offshore wind power plant [J]. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1056–1069. DOI: 10.1109/TSTE.2014.2325951.

    Article  Google Scholar 

  23. YARAMASU V, WU B, ALEPUZ S, KOURO S. Predictive control for low-voltage ride-through enhancement of three-level-boost and NPC-converter-based PMSG wind turbine [J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6832–6843. DOI: 10.1109/TIE.2014.2314060.

    Article  Google Scholar 

  24. NELSON R J, MA H, GOLDENBAUM N M. Fault ride-through capabilities of siemens full-converter wind turbines [C]// IEEE Power and Energy Society General Meeting. Detroit, USA: IEEE, 2011: 12303742. DOI: 10.1109/PES.2011.6039729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ajami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahar, F.A., Ajami, A., Mokhtari, H. et al. A general analytical approach to reach maximum grid support by PMSG-based wind turbines under various grid faults. J. Cent. South Univ. 26, 2833–2844 (2019). https://doi.org/10.1007/s11771-019-4217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4217-1

Keywords

关键词

Navigation