Skip to main content
Log in

Reinforcement by polyurethane to stiffness of air-supported fabric formwork for concrete shell construction

聚氨酯层对气膜模板刚度的强化作用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

By spraying concrete on inner surface, air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures. The fabric formwork has the finished form of concrete structure. Large deviation from the desired shape of concrete shells still remains as central problem due to dead weight of concrete and less stiffness of fabric formwork. Polyurethane can be used not only as a bonding layer between fabrics and concrete but also as an additional stiffening layer. However, there is little research on mechanical behaviors of the polyurethane shell structure. This paper presents experimental studies on an inflated fabric model with and without polyurethane, including relief pressure tests, vertical loading tests and horizontal loading tests. Experimental results show that the additional polyurethane layer can significantly enhance the stiffness of the fabric formwork. Compared with the experiment, a numerical model using shell layered finite elements has a good prediction. The reinforcement by polyurethane to improve stiffness of air-supported fabric formwork is expected to be considered in the design and construction of the concrete shell, especially dealing with the advance of shape-control.

摘要

通过内部喷射混凝土的方法, 气承式充气膜结构可以被用作建造混凝土薄壳结构的模板。气膜 模板施工变形后的形状决定了混凝土薄壳结构的最终形态, 而较小的模板刚度将导致混凝土凝固成形 后薄壳结构的形态与设计值偏差较大。实际施工情况表明, 气膜模板中用作结合层使用的聚氨酯层可 以为其提供一定的刚度, 然而, 与聚氨酯层力学性能相关的研究却很少。本文对气膜模板喷涂聚氨酯 前后的模型分别进行了泄压、竖向加载和水平加载的试验研究, 对比结果表明聚氨酯层可以显著增强 气膜模板试验模型的刚度。采用分层壳单元进行的非线性有限元数值模拟的结果与试验现象较为吻 合。在气膜钢筋混凝土结构的设计和施工中应当考虑聚氨酯层对气膜模板刚度的强化作用, 尤其在提 升结构形态控制方面。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SOBEK W. Ultraleichtbau [J]. Stahlbau, 2014, 83(11): 784–789.

    Article  Google Scholar 

  2. WOERD J D, CHUDOBA R, HEGGER J, BONGARDT C. Oridome: Construction of a dome by folding [C]//Proceedings of the IASS-SLTE 2014 Symposium. Brasilia, Brazil, 2014: 1–8.

    Google Scholar 

  3. GOWDA B. Fabric forms for steel and for cement roofs [C]//Proceedings of the IASS-SLTE 2014 Symposium. Brasilia, Brazil, 2014: 1–8.

    Google Scholar 

  4. NOSE T. Process of constructing cultures of pipes of concrete: U.S. Patent 1, 600, 353 [P]. 1926.

    Google Scholar 

  5. NOSE T. Apparatus for construction concrete culverts: U.S. Patent 1, 964, 286. [P]. 1931.

    Google Scholar 

  6. HEIFETZ H. Domecrete building system (Israel), “Bauen+wohnen = construction + habitation = building + home” [J]. Internationale Zeitschrift, 1972, 26(6): 262–263.

    Google Scholar 

  7. HEIFETZ H. Inflatable forms: U.S. Patent 3, 643, 910, [P]. 1972.

    Google Scholar 

  8. SOUTH D B. Economics and thin shell dome [J]. Concrete International, 1990, 12(8): 18–20.

    Google Scholar 

  9. NEIGHBOR N, SOUTH D B. An evaluation of the monolithic dome construction method for biological containment structures [J]. Applied Biosafety, 1997, 2(1): 39–46.

    Google Scholar 

  10. DOERSTELMANN M, KNIPPERS J, KOSLOWSKI V, et al. ICD/ITKE research Pavilion 2014-15-fibre placement on a pneumatic body based on a water spider web [J]. Architectural Design, 2015, 85(5): 60–65.

    Article  Google Scholar 

  11. KROMOSER B, HUBER P. Pneumatic formwork systems in structural engineering [J]. Advances in Mater Sci and Eng, 2016(6): 1–13.

    Google Scholar 

  12. QIANG Q, QU G Z, SHEN S S, GONG J H. Theoretical analysis and experimental study of inflation forms of air-supported membrane formwork for concrete shell construction [C]// IASS 2015. Annual International Symposium on Future Visions. 2015: 1–16.

    Google Scholar 

  13. TESTA R B, YU L M. Stress-strain relation for coated fabrics [J]. Journal of Engineering Mechanics, 1987, 113(11): 1631–1646.

    Article  Google Scholar 

  14. COLMAN A G, BRIDGENS B N, GOSLING P D. Shear behaviour of architectural fabrics subjected to biaxial tensile loads [J]. Compos Part A: Appl Sci Manuf, 2014, 66(4): 163–174.

    Article  Google Scholar 

  15. BLUM R, BÖGNER H, NÉMOZ G. Testing methods and standards, [M]//FORSTER B, MOLLAERT M. Tensinet European design guide for tensile surface structures. Brussel: Tensinet, 2004: 293–322.

    Google Scholar 

  16. BÖGNER-BALZ H, BLUM R. The mechanical behaviour of coated fabrics used in prestressing textile engineering structures: Theory, simulation and numerical analysis to be used in a FEM-model [J]. J Int Assoc Shell Spatial Struct, 2008, 49(1): 39–47.

    Google Scholar 

  17. MSAJ (Membrane Structures Association of Japan). Testing method for elastic constants of membrane materials. MSAJ/M-02-1995 [S].

  18. GUO Xiao, QING Qiang, GONG Jing-hai, ZHANG Li. A modified material model describing the load-deflection behavior of air-supported fabric structure with decreasing stress [J]. Thin-Walled Structures, 2018, 124: 384–391.

    Article  Google Scholar 

  19. GALLIOT C, LUCHSINGER R H. A simple model describing the non-linear biaxial tensile behaviour of PVC-coated polyester fabrics for use in finite element analysis [J]. Compos Struct, 2009, 90(4): 438–447.

    Article  Google Scholar 

  20. LI Qing-song, QING Qiang, GONG Jin-hai. A simple analytical method for deflation prediction of inflatable structures [J]. Journal of Central South University, 2015, 22(6): 2277–2286.

    Article  Google Scholar 

  21. HE S, CHEN Q, JIANG Z. Nonlinear buckling analysis for a trimmed irregular Kiewitt single-layer spherical shell structure [J]. Journal of Central South University, 2015, 46(2): 701–709.

    Google Scholar 

  22. MINDLIN R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates [J]. Journal of Applied Mechanics, 1951, 18: 31–38.

    MATH  Google Scholar 

Download references

Acknowledgments

Beijing sZ&T Fabric Architecture Technology Co., Ltd is acknowledged for providing the membrane materials and assisting with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-hai Gong  (龚景海).

Additional information

Foundation item: Projects(51178263, 51378307) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Qian, Ss., Qing, Q. et al. Reinforcement by polyurethane to stiffness of air-supported fabric formwork for concrete shell construction. J. Cent. South Univ. 26, 2569–2577 (2019). https://doi.org/10.1007/s11771-019-4195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4195-3

Keywords

关键词

Navigation