Skip to main content
Log in

Fault detection in flotation processes based on deep learning and support vector machine

基于深度学习和支持向量机的浮选过程故障诊断方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Effective fault detection techniques can help flotation plant reduce reagents consumption, increase mineral recovery, and reduce labor intensity. Traditional, online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation, like color, shape, size and texture, always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case. In this work, a new integrated method based on convolution neural network (CNN) combined with transfer learning approach and support vector machine (SVM) is proposed to automatically recognize the flotation condition. To be more specific, CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection. As compared with the existed recognition methods, it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy. Hence, a CNN-SVM based, real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.

摘要

对浮选过程进行故障诊断有助于选矿厂减少药剂消耗, 增加有效矿物的回收以及降低现场操作 工人的劳动强度等。针对传统的浮选过程故障诊断方法大都是对单一的泡沫特征(如泡沫颜色, 形状, 大小, 纹理等)进行人工提取, 存在精度低, 效率低等缺陷。本文提出一种基于深度学习和支持向量 机的浮选过程故障诊断方法。该模型利用卷积神经网络(CNN) 自动提取泡沫图像特征, 利用支持向量 机(SVM) 根据提取的图像特征给出诊断结果。通过与现存的浮选过程诊断方法相比较, 本文提出的 CNN-SVM 相结合的方法, 测试性能优于其他识别模型。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG Chun-hua, ZHOU Kai-jun, MOU Xue-min, GUI Wei-hua. Froth color and size measurement method for flotation based on computer vision [J]. Chinese Journal of Scientific Instrument, 2009, 30(4): 717–721. (in Chinese)

    Google Scholar 

  2. XU Can-hui, GUI Wei-hua, YANG Chun-hua, ZHU Hong-qiu, LIN Yi-qiu, SHI Cao. Flotation process fault detection using output PDF of bubble size distribution [J]. Minerals Engineering, 2012, 26: 5–12.

    Article  Google Scholar 

  3. ZHAO Lu, PENG Tao, HAN Hua, CAO Wei, LOU Yang-ge, XIE Xiao-tian. Fault condition recognition based on multi-scale co-occurrence matrix for copper flotation process [C]// Proceedings of the 19th World Congress International Federation of Automatic Control. Cape Town, South Africa. 2014: 7091–7097.

    Google Scholar 

  4. ALDRICH C, MARAIS C, SHEAN B J, CILLIERS J J. Online monitoring and control of froth flotation systems with machine vision: A review [J]. International Journal of Mineral Processing, 2010, 96(1): 1–13.

    Article  Google Scholar 

  5. YANG Chun-hua, XU Can-hui, GUI Wei-hua, DU Jian-jiang. Nonparametric density estimation of bubble size distribution for monitoring mineral flotation process [C]// Proceedings of the 28th Chinese Control Conference. Shanghai, China. 2009: 2941–2945.

    Google Scholar 

  6. LIU Jin-ping, GUI Wei-hua, TANG Zhao-hui, YANG Chun-hua, ZHU Jian-yong, LI Jian-qi. Recognition of the operational statuses of reagent addition using dynamic bubble size distribution in copper flotation process [J]. Minerals Engineering, 2013, 45: 128–141.

    Article  Google Scholar 

  7. LI Zhong-mei, GUI Wei-hua. The method of reagent control based on time series distribution of bubble size in a gold-antimony flotation process [J]. Asian Journal of Control, 2018, 20(6): 2223–2236.

    Article  Google Scholar 

  8. YANG Chun-hua, REN Hui-feng, GUI Wei-hua, YAN Feng, TANG Zhao-hui. Performance recognition using texture credit distributed SVM for froth flotation process [J]. Chinese Journal of Scientific Instrument, 2011, 32(10): 2205–2209. (in Chinese)

    Google Scholar 

  9. HE Ming-fang, YANG Chun-hua, WANG Xiao-li, GUI Wei-hua, WEI Li-jun. Nonparametric density estimation of froth colour texture distribution for monitoring sulphur flotation process [J]. Minerals Engineering, 2013, 53: 203–212.

    Article  Google Scholar 

  10. LING Yi-qiu, YANG Chun-hua, HE Ming-fang, GUI Wei-hua. Fault condition detection for sulfur flotation process based on texture unit distribution [J]. Computing Technology and Automation, 2013, 32(1): 28–31. (in Chinese)

    Google Scholar 

  11. GUI Wei-hua, LIU Jin-ping, YANG Chun-hua, CHEN Ning, LIAO Xi. Color co-occurrence matrix based froth image texture extraction for mineral flotation [J]. Minerals Engineering, 2013, 46: 60–67.

    Article  Google Scholar 

  12. LECUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]// Proceedings of the 2004 IEEE Computer Society Conference. Washington DC, USA. 2004: 97–104.

    Google Scholar 

  13. FU Y, ALDRICH C. Froth image analysis by use of transfer learning and convolutional neural networks [J]. Minerals Engineering, 2018, 115: 68–78.

    Article  Google Scholar 

  14. SZEGEDY C, LIU W J, SERMANET P, REED S, ANGURLOV D, RABINOVICH A. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2015: 1–9.

    Google Scholar 

  15. LECUN Y, BOTTOU L, BENGIO Y, HAFFNER P. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.

    Article  Google Scholar 

  16. BOUVRIE J. Notes on convolutional neural networks [R]. Cambridge, USA: MIT, 2006.

    Google Scholar 

  17. BYUN H, LEE S W. A survey on pattern recognition applications of support vector machines [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2003, 17(3): 459–486.

    Article  Google Scholar 

  18. NG H W, NGUYEN V D, VONIKAKIS V, WINKLER S. Deep learning for emotion recognition on small datasets using transfer learning [C]// Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. Seattle, USA. 2015: 443–449.

    Chapter  Google Scholar 

  19. SZEGEDY C, VANHOUCKE V, IOFFE S, SHLENS J, WOJNA Z. Rethinking the inception architecture for computer vision [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA. 2016: 2818–2826.

    Google Scholar 

  20. MAATEN L V D, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579–2605.

    MATH  Google Scholar 

  21. HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification. [EB/OL] [2003]. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

    Google Scholar 

  22. MA Ai-lian, XU De-gang, XIE Yong-fang, YANG Chun-hua, GUI Wei-hua. Analysis of dynamic texture features of flotation froth images based on space-time characteristics of complex networks [J]. Journal of Chemical Industry and Engineering, 2016, 68(3): 1023–1031. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-hua Gui  (桂卫华).

Additional information

Foundation item

Projects(61621062, 61563015) supported by the National Natural Science Foundation of China; Project(2016zzts056) supported by the Central South University Graduate Independent Exploration Innovation Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zm., Gui, Wh. & Zhu, Jy. Fault detection in flotation processes based on deep learning and support vector machine. J. Cent. South Univ. 26, 2504–2515 (2019). https://doi.org/10.1007/s11771-019-4190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4190-8

Keywords

关键词

Navigation