Skip to main content
Log in

Nonlinear inversion for magnetotelluric sounding based on deep belief network

基于深度置信网络的大地电磁非线性反演

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To improve magnetotelluric (MT) nonlinear inversion accuracy and stabilitythis work introduces the deep belief network (DBN) algorithm. Firstlya network frame is set up for training in different 2D MT models. The network inputs are the apparent resistivities of known modelsand the outputs are the model parameters. The optimal network structure is achieved by determining the numbers of hidden layers and network nodes. Secondlythe learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models. Finallythe trained DBN is verified through inversion testsin which the network inputs are the apparent resistivities of unknown modelsand the outputs are the corresponding model parameters. The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine (RBM) unsupervised learning and the local optimization of the back propagation (BP) neural network supervised learning. Comparing to the traditional neural network inversionthe calculation accuracy and stability of the DBN for MT data inversion are improved significantly. And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion.

摘要

为进一步提高大地电磁非线性反演的准确度和稳定性, 本文将深度置信网络引入大地电磁反演。 首先, 针对建立的大地电磁二维地电模型数据库设计深度置信网络结构, 对网络隐含层数和各层节点 数进行优选, 网络输入为已知地电模型的视电阻率参数, 输出为该地电模型参数; 然后, 根据优选的 网络参数进行深度置信网络学习训练, 计算出多种地电模型网络连接权值和阈值的最优解; 最后, 将 网络最优连接权值和阈值对未知模型进行反演测试, 网络输入为测试地电模型的视电阻率参数, 输出 为该地电模型电阻率参数。模型实验表明: 相比传统的 BP 神经网络算法, 深度置信网络算法具有全 局寻优的能力, 在保证较快收敛效率的同时, 明显提高了网络收敛成功率和稳定性, 在反演测试中能 够更加准确地逼近真实模型; 相比经典的最小二乘正则化反演法, 深度置信网络算法具有较好的泛化 性能和自学习能力, 反演效率更高, 反演效果更精确。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CONSTABLE S CPARKER R LCONSTABLE C G. Occam's inversion: A practical algorithm for generating smooth models from EM sounding data [J]. Geophysics198752(3): 289–300.

    Article  Google Scholar 

  2. SMITH J TBOOKER J R. Rapid inversion of two and three dimensional magnetotelluric data [J]. Journal of Geophysical Research199196: 3905–3922.

    Article  Google Scholar 

  3. RODI WMACKIE R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion [J]. Geophysics200166(1): 174–187.

    Article  Google Scholar 

  4. MONTAHAEI MOSKOOI B. Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks [J]. Acta Geophysica201462(1): 12–43.

    Article  Google Scholar 

  5. LIU BLI S CNIE L CWANG JL XZHANG Q S. 3D resistivity inversion using an improved genetic algorithm based on control method of mutation direction [J]. Journal of Applied Geophysics201287: 1–8. DOI: https://doi.org/10.1016/j.jappgeo.2012.08.002.

    Article  Google Scholar 

  6. DITTMER J KSZYMANSKI J E. The stochastic inversion of magnetics and resistivity data using the simulated annealing algorithm [J]. Geophysical Prospecting199543(3): 397–416.

    Article  Google Scholar 

  7. HU Zu-zhiHE Zhan-xiangYANG Wen-caiHU Xiang-yun. Constrained inversion of magnetotelluric data with the artificial fish swarm optimization method [J]. Chinese Journal of Geophysics201558(7): 2578–2587DOI: https://doi.org/10.6038/cjg20150732. (in Chinese)

    Google Scholar 

  8. LIU Jian-fengHU Wen-baoHU Xiang-yun. Inversion of 2-D magnetotelluric data by differential ant colony algorithm [J]. Oil Geophysical Prospecting201550(3): 548–555. (in Chinese)

    Google Scholar 

  9. SUJAN GRAVINESH C DNATHAN J DNAWIN R. Self-adaptive differential evolutionary extreme learning machines for longterm solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities [J]. Remote Sensing of Environment2018212: 176–198. DOI: https://doi.org/10.1016/j.rse.2018.05.003.

    Article  Google Scholar 

  10. WANG HeJIANG HuanWANG LiangXI Zhen-zhuZHANG Dao-jun. Magnetotelluric inversion using artificial neural network [J]. Journal of Central South University: Science and Technology201546(5): 1707–1714. DOI: https://doi.org/10.11817/j.issn.1672-7207.2015.05.019. (in Chinese)

    Google Scholar 

  11. JIANG Fei-boDONG LiDAI Qian-wei. Electrical resistivity imaging inversion: An ISFLA trained kernel principal component wavelet neural network approach [J]. Neural Networks2018104: 114–123. DOI: https://doi.org/10.1016/j.neunet.2018.04.012.

    Article  Google Scholar 

  12. HINTON G EOSINDERO STEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computer200618(7): 1527–1554.

    Article  MathSciNet  Google Scholar 

  13. GOODFELLOW IBENGIO YCOURVILLE A. Deep learning [M]. Boston: MIT Press2016.

    MATH  Google Scholar 

  14. LECUN YBENGIO YHINTON G E. Deep learning [J]. Nature2015521: 436–444. DOI: https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  15. CHENG Xiang-yiLIU Hua-pingXU Xin-yingSUN Fu-chun. Denoising deep extreme learning machine for sparse representation [J]. Memetic Comp20179: 199–212. DOI: https://doi.org/10.1007/s12293-016-0185-2.

    Article  Google Scholar 

  16. LEONARDO BCLAUDIA CLUCIANO FGIORGIO M. Integrating articulatory data in deep neural network-based acoustic modeling [J]. Computer Speech and Language201636: 173–195. DOI: https://doi.org/10.1016/j.csl.2015.05.005.

    Article  Google Scholar 

  17. ZEYNETTIN AALFIIA GASSAF HDANIEL L RBRADLEY J E. Deep learning for brain MRI segmentation: State of the art and future directions [J]. J Digit Imaging201730: 449–459. DOI: https://doi.org/10.1007/s10278-017-9983-4.

    Article  Google Scholar 

  18. KASIPRASAD MPANYAM N SMALOJI S. A novel adaptive fractional deep belief networks for speaker emotion recognition [J]. Alexandria Engineering Journal201756: 485–497. DOI: https://doi.org/10.1016/j.aej.2016.09.002.

    Article  Google Scholar 

  19. TANG Bin-binLIU XiaoLEI JieSONG Ming-liTAO Da-pengSUN Shui-faDONG Fang-min. Deep Chart: Combining deep convolutional networks and deep belief networks in chart classification [J]. Signal Processing2016124: 156–161. DOI: https://doi.org/10.1016/j.sigpro.2015.09.027.

    Article  Google Scholar 

  20. DENG LeiFU Shan-shanZHANG Ru-xia. Application of deep belief network in polarimetric SAR image classification [J]. Journal of Image and Graphics201621(7): 933–941. DOI: https://doi.org/10.11834/jig.20160711. (in Chinese)

    Google Scholar 

  21. LALOY EHERAULT RLEE JJACQUES DLINDE N. Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network [J]. Advances in Water Resources2017110: 387–405. DOI: https://doi.org/10.1016/j.advwatres.2017.09.029.

    Article  Google Scholar 

  22. ZHU Lin-qiZHANG ChongWei YANGZhou Xue-qingHUANG Yu-yangZHANG Chao-mo. Inversion of the permeability of a tight gas reservoir with the combination of a deep Boltzmann kernel extreme learning machine and nuclear magnetic resonance logging transverse relaxation time spectrum data [J]. Interpretation20175(3): T341–T350. DOI: https://doi.org/10.1190/INT-2016-0188.1.

    Article  Google Scholar 

  23. CAO Jun-xingWU Shi-kai. Deep Learning: Chance and challenge for deep gas reservoir identification [C]//International Geophysical Conference. QingdaoChina2017: 711–712. DOI: https://doi.org/10.1190/IGC2017-180.

    Google Scholar 

  24. MAURICIO A PJOSPH JAMIR ATAYLOR D. Deep-learning tomography [J]. The Leading Edge201837(1): 58–66. DOI: https://doi.org/10.1190/tle37010058.1.

    Article  Google Scholar 

  25. QIAN FengYIN MiaoLIU Xiao-yangWANG Yao-junLU CaiHU Guang-min. Unsupervised seismic facies analysis via deep convolutional auto encoders [J]. Geophysics201883(3): A39–A43. DOI: https://doi.org/10.1190/geo2017-0524.1.

    Article  Google Scholar 

  26. LAROCHELLE HBENGIO YLOURADOUR JLAMBLIN P. Exploring strategies for training deep neural networks [J]. Journal of Machine Learning Research200910(1): 1–40.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-zhu Xi  (席振铢).

Additional information

Foundation item: Project(41304090) supported by the National Natural Science Foundation of China; Project(2016YFC0303104) supported by the National Key Research and Development Project of China; Project(DY135-S1-1-07) supported by Ocean 13th Five-Year International Marine Resources Survey and Development of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, W., Xi, Zz. et al. Nonlinear inversion for magnetotelluric sounding based on deep belief network. J. Cent. South Univ. 26, 2482–2494 (2019). https://doi.org/10.1007/s11771-019-4188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4188-2

Key words

关键词

Navigation