Skip to main content
Log in

Petrel2ANSYS: Accessible software for simulation of crustal stress fields using constraints provided by multiple 3D models employing different types of grids

Petrel2ANSYS: 基于不同网格模型的地应力场有限元数值模拟辅助软件系统

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Crustal stresses play an important role in both exploration and development in the oil and gas industry. However, it is difficult to simulate crustal stress distributions accurately, because of the incompatibilities that exist among different software. Here, a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS. Furthermore, a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed. Compared to the traditional finite-element simulation-based approach, which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution, the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models. Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility. In addition, with minor modifications, platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.

摘要

地应力是岩体在自然状态下存在的应力, 地应力场的分布对于油气田的勘探开发具有十分重要的意义。由于不同软件平台间数据存储和兼容性等问题, 数据的不连续性和不兼容性影响了地应力场分布状况模拟的准确性。通过 Petrel2ANSYS 数据平台相关算法的开发和集成, 实现了基于 Petrel 建模软件的三维角点网格属性模型和基于 ANSYS 有限元模拟软件的三维有限元模型的双向对接, 进一步提出并实现了基于复杂精细三维地质模型的地应力属性有限元模拟与分析。相比传统有限元地应力属性数值模拟方法, 创新性地提出了针对单一网格的岩石力学参数与有限元材料参数结合赋值的方法, 更精细地刻画出岩石内部和沉积相的非均质性, 进而准确模拟地应力场的分布状态。通过不同的数据测试了基于 Petrel2ANSYS 数据平台的对不同网格模型处理的有效性和准确性, 应用油田实例数 据实现了精细三维地质模型的地应力场有限元模拟, 准确度较高。此外, Petrel2ANSYS 作为一种通用性的数据算法, 进行稍微修改即可进一步兼容其他软件中角点网格与有限元网格的双向对接。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAYASHI M, KANAGAWA T, HIBINO S, MOTOZIMA M, KITAHARA Y. Detection of anisotropic geo-stresses trying by acoustic emission, and non-linear rock mechanics on large excavating caverns [C]// Proceedings of the 4th ISRM Congress. Montreux, Switzerland: International Society for Rock Mechanics and Rock Engineering. 1979: 211–218.

    Google Scholar 

  2. TEUFEL L. In situ stress and natural fracture distribution at depth in the Piceance Basin, Colorado: implications to stimulation and production of low permeability gas reservoirs [C]// Proceedings of the 27th U.S. Symposium on Rock Mechanics (USRMS). Tuscaloosa, Alabama, USA: American Rock Mechanics Association, 1986: 377–392.

    Google Scholar 

  3. WANG Hong-cai, WANG Wei, WANG Lian-jie, SUN Bao-shan, XIA Bo-ru. Three dimensional tectonic stress field and migration of oil and gas in Tanhai [J]. Acta Geosicientia Sinica, 2002, 23(2): 175–178.

    Google Scholar 

  4. MA Shu-zhi, JIA Hong-biao, YI Shun-min, GONG Shu-yun. Analysis of geostress field simulation in Luohu fault zone with 3D finite element method [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(z2): 3898–3903. DOI: https://doi.org/10.3321/j.issn:1000-6915.2006.z2.088. (in Chinese)

    Google Scholar 

  5. ZANG A, STEPHANSSON O. Stress field of the earth's crust [M]. Dordrecht: Springer Netherlands, 2010. DOI: https://doi.org/10.1007/978-1-4020-8444-7.

    Book  Google Scholar 

  6. SHI Xian, CHENG Yuan-fang, CAI Jun, SUN Yuan-wei, YUAN Zheng. Parametric analysis in the horizontal stress calculation based on numerical inversion method [J]. Electronic Journal of Geotechnical Engineering, 2013, 18(1): 5673–5684. http://www.ejge.com/2013/Abs2013.486.htm.

    Google Scholar 

  7. ZHAO Tong-bin, ZHANG Ming-lu, LI Zhan-hai, ZHANG Ze. Numerical simulation of stress relieving and analysis of influencing factors on geostress measurement [C]// Proceedings of the Taishan Academic Forum—Project on Mine Disaster Prevention and Control. Qingdao, China: Atlantis Press, 2014: 1–9. DOI: https://doi.org/10.2991/mining-14.2014.37.

  8. YOSHIDA M. Re-evaluation of the regional tectonic stress fields and faulting regimes in central Kyushu, Japan, behind the 2016 Mw 7.0 Kumamoto Earthquake [J]. Tectonophysics, 2017, 712–713(1): 95–100. DOI: https://doi.org/10.1016/j.tecto.2017.05.011.

    Article  Google Scholar 

  9. ZANG A, STEPHANSSON O, ZIMMERMANN G. Keynote: fatigue hydraulic fracturing [J]. Procedia Engineering, 2017, 191(1): 1126–1134. DOI: https://doi.org/10.1016/j.proeng.2017.05.287.

    Article  Google Scholar 

  10. YOON J S, ZIMMERMANN G, ZANG A. Discrete element modeling of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74(1): 15–23. DOI: https://doi.org/10.1016/j.ijrmms.2014.12.003.

    Article  Google Scholar 

  11. MAGNIER A, SCHOLTES B, NIENDORF T. Analysis of residual stress profiles in plastic materials using the hole drilling method—Influence factors and practical aspects [J]. Polymer Testing, 2017, 59(1): 29–37. DOI: https://doi.org/10.1016/j.polymertesting.2016.12.025.

    Article  Google Scholar 

  12. HUANG Sai-peng, LIU Da-meng, YAO Yan-bin, GAN Quan, CAI Yi-dong, XU Lu-lu. Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing [J]. Journal of Natural Gas Science and Engineering, 2017, 43(1): 69–80. DOI: https://doi.org/10.1016/j.jngse.2017.03.022/.

    Article  Google Scholar 

  13. PARVIZI H, REZAEI-GOMARI S, NABHANI F, TURNER A. Evaluation of heterogeneity impact on hydraulic fracturing performance [J]. Journal of Petroleum Science and Engineering, 2017, 154(1): 344–353. DOI: https://doi.org/10.1016/j.petrol.2017.05.001.

    Article  Google Scholar 

  14. ADACHI J, SIEBRITS E, PEIRCE A, DESROCHES J. Computer simulation of hydraulic fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 739–757. DOI: https://doi.org/10.1016/j.ijrmms.2006.11.006.

    Article  Google Scholar 

  15. HILL R E, PETERSON R E, WARPINSKI N R, TEUFEL L W, ASLAKSON J K. Techniques for determining subsurface stress direction and assessing hydraulic fracture azimuth [C]// Proceedings of SPE Eastern Regional Meeting. Charleston, West Virginia, USA: Society of Petroleum Engineers. 1994: 305-320. DOI: https://doi.org/10.2118/29192-MS.

    Google Scholar 

  16. MILLER II W K, PETERSON R E, STEVENS J E, LACKEY C B, HARRISON C W. In-situ stress profiling and prediction of hydraulic fracture azimuth for the West Texas Canyon sands formation [J]. SPE Production & Facilities, 1994, 9(3): 204–210. DOI: https://doi.org/10.2118/21848-PA.

    Article  Google Scholar 

  17. MCLELLAN P. In-situ stress prediction and measurement by hydraulic fracturing, Wapiti, Alberta [J]. Journal of Canadian Petroleum Technology, 1988, 27(2): 85–95. DOI: https://doi.org/10.2118/87-38-58.

    Article  Google Scholar 

  18. SCHLUMBERGER. Petrel 2016 Introduction [EB/OL]. [2018-04-08].https://www.software.slb.com/products/petrel/petrel-2016,2016-08-07/.

  19. WU Qiang, XU Hua. Three-dimensional geological modeling and its application in Digital Mine [J]. Science China: Earth Sciences, 2014, 57(3): 491–502. DOI: https://doi.org/10.1007/s11430-013-4671-9.

    Article  Google Scholar 

  20. NGUYEN B N, HOU Z, BACON D H, MURRAY C J, WHITE M D. Three-dimensional modeling of the reactive transport of CO2 and its impact on geomechanical properties of reservoir rocks and seals [J]. International Journal of Greenhouse Gas Control, 2016, 46(1): 100–115. DOI: https://doi.org/10.1016/j.ijggc.2016.01.004.

    Article  Google Scholar 

  21. DENNEY D. Seismically integrated geological modeling [J]. Journal of Petroleum Technology, 1998, 50(1): 46–47. DOI: https://doi.org/10.2118/0198-0046-JPT.

    Article  Google Scholar 

  22. HOFFMAN D R. Petrel workflow for adjusting geomodel properties for simulation [C]// Proceedings of the SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: Society of Petroleum Engineers. 2013: 1–16. DOI: https://doi.org/10.2118/164420-MS.

    Google Scholar 

  23. PULITI A, ERBA M, FRANCESCONI A, EI-AGELI L. Geological modelling of a structurally complex reservoir [C]// Proceedings of the International Meeting on Petroleum Engineering. Beijing, China: Society of Petroleum Engineers. 1995: 129–140. DOI: https://doi.org/10.2118/29962-MS.

    Google Scholar 

  24. SEN G. Sequence stratigraphic modeling using outcrop data in 3D space [C]// Proceedings of the SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: Society of Petroleum Engineers. 2013: 1–4. DOI: https://doi.org/10.2118/164396-MS.

    Google Scholar 

  25. WU R, TURPIN A, MACDONALD D, KAVANAGH D. A procedure for the configuration of an inflow control device completion using reservoir modelling and simulation in the North Amethyst Pool [C]// Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition. Abu Dhabi, UAE: Society of Petroleum Engineers, 2011: 1–13. DOI: https://doi.org/10.2118/147960-MS.

    Google Scholar 

  26. ANSYS. ANSYS 18.0 [EB/OL]. [2017-12-08]. http://www.ansys.com/,2017-01-31/.

  27. LIN Tie-jun, YU Hao, LIAN Zhang-hua, YI Yong-gang, ZHANG Qiang. Numerical simulation of the influence of stimulated reservoir volume on in-situ stress field [J]. Journal of Natural Gas Science and Engineering, 2016, 36(1): 1228–1238. DOI: https://doi.org/10.1016/j.jngse.2016.03.040.

    Article  Google Scholar 

  28. YIN Shuai, DING Wen-long, ZHOU Wen, SHAN Yu-ming, XIE Run-cheng, GUO Chun-hua, CAO Xiang-yu, WANG Ru-yue, WANG Xing-hua. In situ stress field evaluation of deep marine tight sandstone oil reservoir: A case study of Silurian strata in northern Tazhong area, Tarim Basin, NW China [J]. Marine and Petroleum Geology, 2017, 80(1): 49–69. DOI: https://doi.org/10.1016/j.marpetgeo.2016.11.021.

    Article  Google Scholar 

  29. LI Feng. Numerical simulation of 3D in-situ stress in Hailaer oil field [J]. Procedia Environmental Sciences, 2012, 12(1): 273–279. DOI: https://doi.org/10.1016/j.proenv.2012.01.277.

    Article  Google Scholar 

  30. LAVROV A, LARSEN I, HOLT R M, HOLT R M, BAUER A, PRADHAN S. Hybrid FEM/DEM simulation of hydraulic fracturing in naturally-fractured reservoirs [C]// Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium. Minneapolis, Minnesota, USA: American Rock Mechanics Association, 2014: 1–8. https://www.onepetro.org/conference-paper/ARMA-2014-7107.

    Google Scholar 

  31. SITHARAM T G, KUMARI S D A. Numerical simulations of tunnels using DEM and FEM [C]// Proceedings of the 13th ISRM International Congress of Rock Mechanics. Montreal, Canada: International Society for Rock Mechanics, 2015: 1–7. https://www.onepetro.org/conference-paper/ISRM-13CONGRESS-2015-388.

    Google Scholar 

  32. YANG Y S, LEE J O, KIM B J. Structural reliability analysis using commercial FEM package [C]// Proceedings of the the 6th International Offshore and Polar Engineering Conference. Los Angeles, California, USA: International Society of Offshore and Polar Engineers, 1996: 387–394. https://www.onepetro.org/conference-paper/ISOPE-I-96-307.

    Google Scholar 

  33. ZHANG Kun-yong, SHI Jian-yong, YIN Zong-ze. Stability analysis of channel slope based on FEM strength reduction [C]// Proceedings of the 20th International Offshore and Polar Engineering Conference. Beijing, China: International Society of Offshore and Polar Engineers, 2010: 757–762. https://www.onepetro.org/conference-paper/ISOPE-I-10-600.

    Google Scholar 

  34. TIAN Yi-ping, LIU Xiong, LI Xing. 3-D numerical finite element method of tectonic stress field simulation based on irregular corner-point grid [C]// Proceedings of the International Symposium on Intelligence Computation and Applications. Heidelberg, Berlin: Springer, 2010: 146–153. DOI: https://doi.org/10.1007/978-3-642-16388-3_16.

    MATH  Google Scholar 

  35. ZIENKIEWICZ O C. Stress analysis of rock as a ‘No Tension’ material [J]. Géotechnique, 1968, 18(1): 56–66. DOI: https://doi.org/10.1680/geot.1968.18.1.56.

    Article  Google Scholar 

  36. LIU Jing-shou, DING Wen-long, YANG Hai-ming, WANG Ru-yue, YIN Shuai, LI Ang, FU Fu-quan. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs: A case study of the lower Cambrian Niutitang formation in the Cen'gong block, South China [J]. Tectonophysics, 2017, 712–713(1): 663–683. DOI: https://doi.org/10.1016/j.tecto.2017.06.030.

    Article  Google Scholar 

  37. JU Wei, SHEN Jian, QIN Yong, MENG Shang-zhi, WU Cai-fang, SHEN Yu-lin, YANG Zhao-biao, LI Guo-zhang, LI Chao. In-situ stress state in the Linxing region, eastern Ordos Basin, China: Implications for unconventional gas exploration and production [J]. Marine and Petroleum Geology, 2017, 86(1): 66–78. DOI: https://doi.org/10.1016/j.marpetgeo.2017.05.026.

    Article  Google Scholar 

  38. SCHLUMBERGER. ECLIPSE 2014 [EB/OL]. [2018-04-08]. https://www.software.slb.com/products/eclipse/eclipse-2014,2014-06-08.

  39. PONITING D K. Corner point grid geometry in reservoir simulation [C]// Proceedings of the 1st European Conference on the Mathematics of Oil Recovery. Cambridge, UK: European Association of Geoscientists & Engineers, 1989: 1–4. DOI: https://doi.org/10.3997/2214-4609.201411305.

    Google Scholar 

  40. PARK C H, SHINN Y J, PARK Y C, HUH D G, LEE S K. PET2OGS: Algorithms to link the static model of Petrel with the dynamic model of OpenGeoSys [J]. Computers & Geosciences, 2014, 62(1): 95–102. DOI: https://doi.org/10.1016/j.cageo.2013.09.014.

    Article  Google Scholar 

  41. ZHANG Zhi-qiang, SHI Yong-min, BU Xiang-qian, LIANG Yao-huan, ZHANG En-yu. A study of in-situ stress direction change during waterflooding in the low permeability reservoirs [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 861–870. DOI: https://doi.org/10.13209/j.0479-8023.2015.140. (in Chinese)

    Google Scholar 

  42. ZHU Dan-ni, PAN Mao, DANG Yong-chao, ZHU Zhi-ping, LIU Pei-gang, SHI Yong-min. Characterization and fracturing stimulation on single sand body of tight sandstone oil reservoir in Ansai Oilfield [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(3): 457–466. DOI: https://doi.org/10.13209/j.0479-8023.2015.117. (in Chinese)

    Google Scholar 

Download references

Acknowledgment

We express our sincere gratitude to ZHU Dan-ni, LIANG Yao-huan, ZHANG Chi and CAO Kai, who provided substantial help in carrying out this work. We also thank HUANG Sheng-xuan, YU Stella and Springer Nature Author Services, who provided linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Pan  (潘懋).

Additional information

Foundation item: Project(2017ZX05013002-002) supported by Major National Science and Technology Projects of China; Project(RIPED-2016-JS-276) supported by Petro-China Research Institute of Petroleum Exploration and Development Received date: 2018-04-12; Accepted date: 2018-12-10 Corresponding author: PAN Mao, PhD, Professor; Tel: +86-10-62751165; E-mail: panmao@pku.edu.cn;ORICD:0000-0001-8239-2359

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yy., Pan, M. & Liu, Sq. Petrel2ANSYS: Accessible software for simulation of crustal stress fields using constraints provided by multiple 3D models employing different types of grids. J. Cent. South Univ. 26, 2447–2463 (2019). https://doi.org/10.1007/s11771-019-4186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4186-4

Key words

关键词

Navigation