Skip to main content
Log in

Demodulation spectrum analysis for multi-fault diagnosis of rolling bearing via chirplet path pursuit

基于线调频小波路径追踪的多故障轴承解调频谱分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The vibration signals of multi-fault rolling bearings under nonstationary conditions are characterized by intricate modulation features, making it difficult to identify the fault characteristic frequency. To remove the time-varying behavior caused by speed fluctuation, the phase function of target component is necessary. However, the frequency components induced by different faults interfere with each other. More importantly, the complex sideband clusters around the characteristic frequency further hinder the spectrum interpretation. As such, we propose a demodulation spectrum analysis method for multi-fault bearing detection via chirplet path pursuit. First, the envelope signal is obtained by applying Hilbert transform to the raw signal. Second, the characteristic frequency is extracted via chirplet path pursuit, and the other underlying components are calculated by the characteristic coefficient. Then, the energy factors of all components are determined according to the time-varying behavior of instantaneous frequency. Next, the final demodulated signal is obtained by iteratively applying generalized demodulation with tunable E-factor and then the band pass filter is designed to separate the demodulated component. Finally, the fault pattern can be identified by matching the prominent peaks in the demodulation spectrum with the theoretical characteristic frequencies. The method is validated by simulated and experimental signals.

摘要

由于非平稳工况下多故障轴承复杂调制特征的影响, 使得识别故障特征频率十分困难。为了消 除振动信号时变工况影响, 必须获得特征频率的相位函数。然而, 多故障的特征频率之间互相干扰, 影响了瞬时频的提取。因此, 本文提出一种基于线调频小波路径追踪的多故障轴承改进解调频谱分析 方法。对原始信号进行Hilbert 变换得到包络信号;使用线调频小波路径追踪算法从包络信号提取特 征频率, 并且根据特征系数计算其他特征频率;根据振动信号的时变特征计算各成分的能量因子;迭 代使用能量因子可调广义解调算法和带通滤波器获得解调信号;对解调信号进行频谱分析, 识别轴承 特征频率。仿真和试验信号的分析验证了该算法的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GUO Yu, LIU Ting-wei, NA Jing, FUNG Rong-fong. Envelope order tracking for fault detection in rolling element bearings [J]. Journal of Sound and Vibration, 2012, 331(25): 5644–5654. DOI: https://doi.org/10.1016/j.jsv.2012.07.026.

    Article  Google Scholar 

  2. XIANG Jia-wei, ZHONG Yong-teng, GAO Hai-feng. Rolling element bearing fault detection using PPCA and spectral kurtosis [J]. Measurement, 2015, 75: 180–191. DOI: https://doi.org/10.1016/j.measurement.2015.07.045.

    Article  Google Scholar 

  3. FENG Zhi-peng, CHEN Xiao-wang, WANG Tian-yang. Time-varying demodulation analysis for rolling bearing fault diagnosis under variable speed conditions [J]. Journal of Sound and Vibration, 2017, 400: 71–85. DOI: https://doi.org/10.1016/j.jsv.2017.03.037.

    Article  Google Scholar 

  4. FENG Zhi-peng, LIANG Ming, CHU Fu-lei. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples [J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165–205. DOI: https://doi.org/10.1016/j.ymssp.2013.01.017.

    Article  Google Scholar 

  5. WANG Chun-sheng, SHA Chun-yang, SU Mei, HU Yu-kun. An algorithm to remove noise from locomotive bearing vibration signal based on self-adaptive EEMD filter [J]. Journal of Central South University, 2017, 24(2): 478–488. DOI: https://doi.org/10.1007/s11771-017-3450-8.

    Article  Google Scholar 

  6. ANTONI J, RANDALL R B. The spectral kurtosis application to the vibratory surveillance and diagnostics of rotating machines [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 308–331. DOI: https://doi.org/10.1016/j.ymssp.2004.09.002.

    Article  Google Scholar 

  7. WANG Yan-xue, XIANG Jia-wei, RICHARD M, LIANG Ming. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications [J]. Mechanical Systems and Signal Processing, 2016, 66-67: 679–698. DOI: https://doi.org/10.1016/j.ymssp.2015.04.039.

    Article  Google Scholar 

  8. YU De-jie, WANG Min, CHENG Xiang-min. A method for the compound fault diagnosis of gearboxes based on morphological component analysis [J]. Measurement, 2016, 91: 519–531. DOI: https://doi.org/10.1016/j.measurement.2016.05.087.

    Article  Google Scholar 

  9. PURUSHOTHAM V, NARAYANAN S, PRASAD S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition [J]. NDT and E International, 2005, 38(8): 654–664. DOI: https://doi.org/10.1016/j.ndteint.2005.04003.

    Article  Google Scholar 

  10. TENG Wei, DING Xian, ZHANG Xiao-long, LIU Yi-bing, MA Zhi-yong. Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform [J]. Renewable Energy, 2016, 93: 591–598. DOI: https://doi.org/10.1016/j.renene.2016.03.025.

    Article  Google Scholar 

  11. CHEN Fa-fa, TANG Bao-ping, SONG Tao, LI Li. Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization [J]. Measurement, 2014, 47(1): 576–590. DOI: https://doi.org/10.1016/j.measurement.2013.08.021.

    Article  Google Scholar 

  12. HE Shui-long, CHEN Jing-long, ZHOU Zi-tong, ZI Yan-yang, WANG Yan-xue, WANG Xiao-dong. Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis [J]. Mechanical Systems and Signal Processing, 2016, 76-77: 742–758. DOI: https://doi.org/10.1016/j.ymssp.2016.02.061.

    Article  Google Scholar 

  13. JIANG Hong-kai, LI Cheng-liang, LI Hua-xing. An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis [J]. Mechanical Systems and Signal Processing, 2013, 36(2): 225–239. DOI: https://doi.org/10.1016/j.ymssp.2012.12.010.

    Article  Google Scholar 

  14. LI Zhi-xiong, YAN Xin-ping, YUAN Cheng-qing, PENG Zhong-xiao, LI Li. Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method [J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2589–2607. DOI: https://doi.org/10.1016/j.ymssp.2011.02.017.

    Article  Google Scholar 

  15. PATEL V N, TANDON N, PANDEY R K. A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races [J]. Journal of Tribology, 2010, 132(4): 041101. DOI: https://doi.org/10.1115/1.4002333.

    Article  Google Scholar 

  16. CAO Hong-rui, NIU Lin-kai, HE Zheng-jia. Method for vibration response simulation and sensor placement optimization of a machine tool spindle system with a bearing defect [J]. Sensors, 2012, 12(7): 8732–8754. DOI: https://doi.org/10.3390/s120708732.

    Article  Google Scholar 

  17. WANG Tian-yang, LIANG Ming, LI Jian-yong, CHENG Wei-dong, LI Chuan. Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification [J]. Mechanical Systems and Signal Processing, 2015, 62-63: 30–53. DOI: https://doi.org/10.1016/j.ymssp.2015.03.005.

    Article  Google Scholar 

  18. YANG Yu, WANG Huan-huan, CHENG Jun-sheng, ZHANG Kang. A fault diagnosis approach for roller bearing based on VPMCD under;variable speed condition [J]. Measurement, 2013, 46(8): 2306–2312. DOI: https://doi.org/10.1016/j.measurement.2013.03.023.

    Article  Google Scholar 

  19. LI Yong-zhuo, DING Kang, HE Guo-lin, JIAO Xin-tao. Non-stationary vibration feature extraction method based on sparse decomposition and order tracking for gearbox fault diagnosis [J]. Measurement, 2018, 124: 453–469. DOI: https://doi.org/10.1016/j.measurement.2018.04.063.

    Article  Google Scholar 

  20. ZHAO Ming, LIN Jing, WANG Xiu-feng, LEI Ya-guo, CAO Jun-yi. A tacho-less order tracking technique for large speed variations [J]. Mechanical Systems and Signal Processing, 2013, 40(1): 76–90. DOI: https://doi.org/10.1016/j.ymssp.2013.03.024.

    Article  Google Scholar 

  21. WANG Yi, XU Guang-hua, LUO Ai-ling, LIANG Lin, JIANG Kuo-sheng. An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection [J]. Journal of Sound and Vibration, 2016, 367(14): 233–249. DOI: https://doi.org/10.1016/j.jsv.2015.12.041.

    Article  Google Scholar 

  22. ZHAO De-zun, LI Jian-yong, CHENG Wei-dong, WANG Tian-yang, WEN Wei-gang. Rolling element bearing instantaneous rotational frequency estimation based on EMD soft-thresholding denoising and instantaneous fault characteristic frequency [J]. Journal of Central South University, 2016, 23(7): 1682–1689. DOI: https://doi.org/10.1007/s11771-016-3222-x.

    Article  Google Scholar 

  23. SHI Juan-juan, LIANG Ming, GUAN Yun-peng. Bearing fault diagnosis under variable rotational speed via the joint application of windowed fractal dimension transform and generalized demodulation: A method free from prefiltering and resampling [J]. Mechanical Systems and Signal Processing, 2016, 68-69(6): 15–33. DOI: https://doi.org/10.1016/j.ymssp.2015.08.019.

    Article  Google Scholar 

  24. FENG Zhi-peng, CHEN Xiao-wang, LIANG Ming. Joint envelope and frequency order spectrum analysis based on iterative generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions [J]. Mechanical Systems and Signal Processing, 2016, 76-77: 242–264. DOI: https://doi.org/10.1016/j.ymssp.2016.02.047.

    Article  Google Scholar 

  25. CHENG Wei-dong, GAO R X, WANG Jin-jiang, WANG Tian-yang, WEN Wei-gang, LI Jian-yong. Envelope deformation in computed order tracking and error in order analysis [J]. Mechanical Systems and Signal Processing, 2014, 48(1, 2): 92–102. DOI: https://doi.org/10.1016/j.ymssp.2014.03.004.

    Article  Google Scholar 

  26. COMBET F, ZIMROZ R. A new method for the estimation of the instantaneous speed relative fluctuation in a vibration signal based on the short time scale transform [J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1382–1397. DOI: https://doi.org/10.1016/j.ymssp.2008.07.001.

    Article  Google Scholar 

  27. URBANEK J, BARSZCZ T, ANTONI J. A two-step procedure for estimation of instantaneous rotational speed with large fluctuations [J]. Mechanical Systems and Signal Processing, 2013, 38(1): 96–102. DOI: https://doi.org/10.1016/j.ymssp.2012.05.009.

    Article  Google Scholar 

  28. WANG Tian-yang, LIANG Ming, LI Jian-yong, CHENG Wei-dong. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis [J]. Mechanical Systems and Signal Processing, 2014, 45(1): 139–153. DOI: https://doi.org/10.1016/j.ymssp.2013.11.011.

    Article  Google Scholar 

  29. LIU Dong-dong, CHENG Wei-dong, WEN Wei-gang. Rolling bearing fault diagnosis via ConceFT-based time-frequency reconfiguration order spectrum analysis [J]. IEEE Access, 2018, 6(1): 1–13. DOI: https://doi.org/10.1109/ACCESS.2018.2877711.

    Google Scholar 

  30. CANDES E J, CHARLTON P R, HELGASON H. Detecting highly oscillatory signals by chirplet path pursuit [J]. Applied and Computational Harmonic Analysis, 2008, 24(1): 14–40. DOI: https://doi.org/10.1016/j.acha.2007.04.003.

    Article  MathSciNet  MATH  Google Scholar 

  31. OLHEDE S, WALDEN A T. A generalized demodulation approach to time-frequency projections for multicomponent signals [J]. Proceedings Mathematical Physical and Engineering Sciences, 2005, 461(2059): 2159–2179. DOI: https://doi.org/10.1098/rspa.2005.1455.

    Article  MathSciNet  MATH  Google Scholar 

  32. LIU Dong-dong, CHENG Wei-dong, WEN Wei-gang. Generalized demodulation with tunable E-Factor for rolling bearing diagnosis under time-varying rotational speed [J]. Journal of Sound and Vibration, 2018, 430(15): 59–74. DOI: https://doi.org/10.1016/j.jsv.2018.05.026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-dong Cheng  (程卫东).

Additional information

Foundation item: Project(2018YJS137) supported by the Fundamental Research Funds for the Central Universities, China; Project(51275030) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Dd., Cheng, Wd. & Wen, Wg. Demodulation spectrum analysis for multi-fault diagnosis of rolling bearing via chirplet path pursuit. J. Cent. South Univ. 26, 2418–2431 (2019). https://doi.org/10.1007/s11771-019-4184-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4184-6

Key words

关键词

Navigation