Skip to main content
Log in

Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm

基于遗传算法的应急救援车辆线控转向系统的分数阶 PID 控制方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Aiming at dealing with the difficulty for traditional emergency rescue vehicle (ECV) to enter into limited rescue scenes, the electro-hydraulic steer-by-wire (SBW) system is introduced to achieve the multi-mode steering of the ECV. The overall structure and mathematical model of the SBW system are described at length. The fractional order proportional-integral-derivative (FOPID) controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system. The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation. Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error (ITAE), peak overshoot, as well as settling time. The time-domain simulations are implemented to identify the performance of the raised FOPID controller. The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative (PID) controller on the part of transient response, tracking capability and robustness.

摘要

针对传统应急救援车辆很难顺利通过狭小地域的救援现场, 本文设计电液线控转向系统, 实现 应急救援车辆的多模式转向。首先, 详细描述了电液线控转向系统的总体架构和数学模型。其次, 设 计基于分数阶微积分理论的分数阶 PID 控制器 控制线控转向系统中转向油缸的运动。进一步, 在分 数阶 PID 控制器设计中考虑抗饱和问题。然后, 通过遗传算法最大化适应度函数, 优化分数阶 PID 控 制器的 5 个参数。该适应度函数包括时间乘绝对值误差积分, 最大超调和调节时间。最后, 通过时域 仿真来判定分数阶 PID 控制器的性能。仿真结果表明, 本文所提出的分数阶 PID 控制器在瞬态响应, 跟踪能力和鲁棒性方面比传统 PID 控制器具有更好的控制特性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG Han, ZHAO Wan-zhong. Stability control strategy of steer-by-wire system based on LQG/LTR [J]. Science China: Technological Sciences, 2017, 60(6): 1–10. DOI: https://doi.org/10.1007/s11431-016-0787-4. (in Chinese)

    Google Scholar 

  2. WU Xiao-dong, ZHANG Ming-ming, XU Min, KAKOGAWA Y. Adaptive feedforward control of a steer-by-wire system by online parameter estimator [J]. International Journal of Automotive Technology, 2018, 19(1): 159–166. DOI: https://doi.org/10.1007/s12239-018-0015-2.

    Article  Google Scholar 

  3. BALACHANDRAN A, GERDES J C. Designing steering feel for steer-by-wire vehicles using objective measures [J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(1): 373–383. DOI: https://doi.org/10.1109/TMECH.2014.2324593.

    Article  Google Scholar 

  4. JUNAID I, KHALIL M Z, CHANGSOO H, ABDUL M K, MIAN A A. Adaptive global fast sliding mode control for steer-by-wire system road vehicles [J]. Applied Sciences, 2017, 7(7): 1–26. DOI: https://doi.org/10.3390/app7070738.

    Google Scholar 

  5. NGUYEN B H, RYU J H. Direct current measurement based steer by wire systems for realistic driving feeling [C]//IEEE International Symposium on Industrial Electronics (ISIE). Seoul, Korea, 2009: 1023–1028. DOI: https://doi.org/10.1109/ISIE.2009.5221999.

    Google Scholar 

  6. MOHAMED A, MAGDY R, MOHAMED R, SAYED S. Observer-based optimal position control for electrohydraulic steer-by-wire system using gray-box system identified model [J]. Journal of Dynamic Systems Measurement and Control, 2017, 139(12): 1–9. DOI: https://doi.org/10.1115/1.4037164.

    Google Scholar 

  7. DAHER N, IVANTYSYNOVA M. A steer-by-wire system that enables remote and autonomous operation [J]. SAE Paper, 2014. DOI: https://doi.org/10.4271/2014-01-2404.

    Book  Google Scholar 

  8. YONG Jia-wang, GAO Feng, DING Neng-gen, HE Yu-ping. Pressure-tracking control of a novel electro-hydraulic braking system considering friction compensation [J]. Journal of Central South University, 2017, 24(8): 1909–1921. DOI: https://doi.org/10.1007/s11771-017-3598-2.

    Article  Google Scholar 

  9. LEE C F, SAVITSKI D, MANZIE C, IVANOV V. Active brake judder compensation using an electro-hydraulic brake system [J]. SAE International Journal of Commercial Vehicles, 2015, 8(1): 20–26. DOI: https://doi.org/10.4271/2015-01-0619.

    Article  Google Scholar 

  10. DU Heng, WEI Jian-hua, FANG Jin-hui. The design, simulation, and experiment of high-accuracy multi-axle electro-hydraulic control servo steering system [J]. Advances in Mechanical Engineering, 2016, 8(10): 1–15. DOI: https://doi.org/10.1177/1687814016674383.

    Google Scholar 

  11. DAHER N, IVANTYSYNOVA M. A virtual yaw rate sensor for articulated vehicles featuring novel electro-hydraulic steer-by-wire technology [J]. Control Engineering Practice, 2014, 30: 45–54. DOI: https://doi.org/10.1016/j.conengprac.2014.05.005.

    Article  Google Scholar 

  12. SHEN Wei, YU Pang, JIANG Ji-hai. Robust controller design of the integrated direct drive volume control architecture for steering systems [J]. ISA Transactions, 2018, 78: 116–129. DOI: https://doi.org/10.1016/j.isatra.2017.05.008.

    Article  Google Scholar 

  13. SHEN Wei, WANG Jie-hao, HUANG Hong-lei, HE Jun-yi. Fuzzy sliding mode control with state estimation for velocity control system of hydraulic cylinder using a new hydraulic transformer [J]. European Journal of Control, 2018, 15: 1–11. DOI: https://doi.org/10.1016/j.ejcon.2018.11.005.

    MATH  Google Scholar 

  14. SHEN Wei, SU Xiao-yu, PANG Yu, ZHAO Rui-han. Robust controller design for the excavator swing system under the active regulating common pressure rail [J]. Transactions of the Institute of Measurement and Control, 40(11): 3323–3332. DOI: https://doi.org/10.1177/0142331217707369.

  15. WANG Da-zhuang, ZHAO Ding-xuan, GONG Ming-de, YANG Bin. Research on robust model predictive control for electro-hydraulic servo active suspension systems [J]. IEEE ACCESS, 2018, 6: 3231–3240. DOI: https://doi.org/10.1109/ACCESS.2017.2787663.

    Article  Google Scholar 

  16. WANG Hong-hui, LI Jun, YUAN Zhao-hui, WU Juan. Robust adaptive PID control of electrohydraulic servo load system [J]. Journal of Central South University, 2011, 42(suppl 1): 350–354. http://www.zndxzk.com.cn/paper/paperView.aspx?id=paper_29401. (in Chinese)

    Google Scholar 

  17. GHAZALI R, PAHARUDIN M, SAM Y M, HUSSIEN S Y S, JALI M H. Intelligent controller design for a nonlinear quarter-car active suspension with electrohydraulic actuator [J]. Journal of Engineering Science and Technology, 2017, 12: 39–51. http://jestec.taylors.edu.my/Special%20Issue_ISSC_2016/ISSC%202016_paper%204.pdf.

    Google Scholar 

  18. WANG Ru, TAN Chao, XU Jing, WANG Zhong-bin, JIN Jing-fei, MAN Yi-qiao. Pressure control for a hydraulic cylinder based on a self-tuning PID controller optimized by a hybrid optimization algorithm [J]. Algorithms, 2017, 10(1): 1–13. DOI: https://doi.org/10.3390/a10010019.

    Article  MathSciNet  MATH  Google Scholar 

  19. BUCANOVIC L J, LAZAREVIC M P, BATALOV S N. The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process [J]. Hemijska Industrija, 2014, 68(5): 519–528. DOI: https://doi.org/10.2298/HEMIND130717078B.

    Article  Google Scholar 

  20. BETTOU K, CHAREF A. Control quality enhancement using fractional PIλDμ controller [J]. International Journal of Systems Science, 2009, 40: 875–888. DOI: https://doi.org/10.1080/00207720902974546.

    Article  MathSciNet  MATH  Google Scholar 

  21. MONJE C A, CHEN Yang-quan, VINAGRE B M, XUE Ding-yü, FELIU V. Fractional-order systems and controls-fundamentals and applications [M]. Berlin: Advances in Industrial Control, 2010.

    MATH  Google Scholar 

  22. DONG Xu-bin, ZHAO Ding-xuan, YANG Bin, HAN Cheng-hao. Fractional-order control of active suspension actuator based on parallel adaptive clonal selection algorithm [J]. Journal of Mechanical Science and Technology, 2016, 30(6): 2769–2781. DOI: https://doi.org/10.1007/s12206-016-0538-2.

    Article  Google Scholar 

  23. LI Hong-sheng, LUO Ying, CHEN Yang-quan. A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments [J]. IEEE Transactions on Control Systems Technology, 2010, 18: 516–520. DOI: https://doi.org/10.1109/TCST.2009.2019120.

    Article  Google Scholar 

  24. ZHAO Jiang-bo, WANG Jun-zheng. The fractional order PI control for an energy saving electro-hydraulic system [J]. Transactions of the Institute of Measurement and Control, 2017, 39(4): 505–519. DOI: https://doi.org/10.1177/0142331215610184.

    Article  Google Scholar 

  25. GAO Qiang, HOU Yuan-long, DENG Tong-bin, WANG Chao, HOU Run-min. Extended state observer-based fractional order proportional-integral-derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning [J]. Advances in Mechanical Engineering, 2015, 7(12): 1–11. DOI: https://doi.org/10.1177/1687814015620736.

    Article  Google Scholar 

  26. ZHAO Jiang-bo, WANG Jun-zheng, WANG Shou-kun. Fractional order control to the electro-hydraulic system in insulator fatigue test device [J]. Mechatronics, 2013, 23(7): 828–839. DOI: https://doi.org/10.1016/j.mechatronics.2013.02.002.

    Article  Google Scholar 

  27. NAGENDRA K, BARJEEV T, VISHAL K. Application of fractional order PID controller for AGC under deregulated environment [J]. International Journal of Automation and Computing, 2018, 15(1): 84–93. DOI: https://doi.org/10.1007/s11633-016-1036-9.

    Article  Google Scholar 

  28. LIU Lu, SHAN Liang, DAI Yue-wei, LIU Cheng-lin, QI Zhi-dong. Improved quantum bacterial foraging algorithm for tuning parameters of fractional-order PID controller [J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 166–175. DOI: https://doi.org/10.21629/JSEE.2018.01.17.

    Article  Google Scholar 

  29. ORTIZ-QUISBERT M E, DUARTE-MERMOUD M A, MILLA F, CASTRO-LINARES R, LEFRANC G. Optimal fractional order adaptive controllers for AV R applications [J]. Electrical Engineering, 2018, 100(1): 267–283. DOI: https://doi.org/10.1007/s00202-016-0502-2.

    Article  Google Scholar 

  30. RAJASEKHAR A, ABRAHAM A, PANT M. A hybrid differential artificial bee colony algorithm based tuning of fractional order controller for permanent magnet synchronous motor drive [J]. International Journal of Machine Learning & Cybernetics, 2014, 5: 327–337. DOI:https://doi.org/10.1007/s13042-012-0136-2.

    Article  Google Scholar 

  31. ZHANG Mei-na, LIN Xiang-ze, YIN Wen-qing. An improved tuning method of fractional order proportional differentiation (FOPD) controller for the path tracking control of tractors [J]. Biosystems Engineering, 2013, 116: 478–486. DOI: https://doi.org/10.1016/j.biosystemseng.2013.10.001.

    Article  Google Scholar 

  32. YE Yi, YIN Chen-bo, GONG Yue, ZHOU Jun-jing. Position control of nonlinear hydraulic system using an improved PSO based PID controller [J]. Mechanical Systems and Signal Processing, 2017, 83(15): 241–259. DOI: https://doi.org/10.1016/j.ymssp.2016.06.010.

    Article  Google Scholar 

  33. CHANG Wei-der. Nonlinear CSTR control system design using an artificial bee colony algorithm [J]. Simulation Modelling Practice and Theory, 2013, 31: 1–9. DOI: https://doi.org/10.1016/j.simpat.2012.11.002.

    Article  Google Scholar 

  34. KUMAR A, KUMAR V. Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator [J]. International Journal of Electronics and Communications, 2017, 79: 219–233. DOI: https://doi.org/10.1016/j.aeue.2017.06.008.

    Article  Google Scholar 

  35. PANKAJ R, VINEET S, OM P. Determination of stabilizing parameter of fractional order PID controller using genetic algorithm [J]. International Journal of Computational Engineering & Management, 2012, 15(1): 24–32. https://journals.indexcopernicus.com/search/article?icid=975996.

    Google Scholar 

  36. ASHU A, BHAWNA T. Design of fractional order PID controller for dc motor using genetic algorithm [J]. Telkomnika Indonesian Journal of Electrical Engineering, 2014, 12(12): 8140–8151. DOI: https://doi.org/10.11591/telkomnika.v12i12.6470.

    Google Scholar 

  37. GAD S, METERED H, BASSUINY A, GHANY A. Multi-objective genetic algorithm fractional-order PID controller for semi-active magnetorheologically damped seat suspension [J]. Journal of Vibration & Control, 2016, 34: 71–80. DOI: https://doi.org/10.1177/1077546315591620.

    Google Scholar 

  38. XIONG Bao-hua, KONG Qing-sheng, CHEN Xiong. A fractional order PID controller tuning via PSO of Cuk converter [J]. International Journal of Wireless and Mobile Computing, 2017, 12(2): 147–153. DOI: https://doi.org/10.1504/IJWMC.2017.084174.

    Article  Google Scholar 

  39. HE Ji-huan, LI Zheng-biao. Converting fractional differential equations into partial differential equations [J]. Thermal Science, 2012, 16(2): 331–334. DOI: https://doi.org/10.2298/tsci110503068h.

    Article  MathSciNet  Google Scholar 

  40. JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results [J]. Computers & Mathematics with Applications, 2006, 51(9): 1367–1376. DOI: https://doi.org/10.1016/j.camwa.2006.02.001.

    Article  MathSciNet  MATH  Google Scholar 

  41. SHIN H B, PARK J G. Anti-windup PID controller with integral state predictor for variable speed motor drives [J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1509–1516. DOI: https://doi.org/10.1109/TIE.2011.2163911.

    Article  Google Scholar 

  42. ZHANG Hai-ming, MIAO Zhong-cui. Anti-windup speed controller design for double close-loop DC motor control system [J]. Small & Special Electrical Machines, 2016, 44(10): 70–73. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2016&filename=WTDJ201610019&v=MjE4NzdXTTFGckNVUkxPZll1Wm1GeURrVXIvT01qblBaTEc0SDlmTnI0OUViWVI4ZVgxTHV4WVM3RGgxVDNxVHI=. (in Chinese)

    MathSciNet  Google Scholar 

  43. ABDUALNASER M, HATAMI T, GLISIC S B, ORLOVIC A M. Determination of kinetic parameters for complex trancesterification reaction by standard optimisation methods [J]. Hemijska Industrija, 2014, 68: 149–159. DOI: https://doi.org/10.2298/HEMIND130118037A.

    Article  Google Scholar 

  44. TRAN H K, NGUYEN T N. Flight motion controller design using genetic algorithm for a quadcopter [J]. Measurement and Control, 2018, 51: 59–64. DOI: https://doi.org/10.1177/0020294018768744.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen  (陈伟).

Additional information

Foundation item: Project(2016YFC0802904) supported by the National Key Research and Development Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Fx., Liu, Xh., Chen, W. et al. Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm. J. Cent. South Univ. 26, 2340–2353 (2019). https://doi.org/10.1007/s11771-019-4178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4178-4

Keywords

关键词

Navigation