Skip to main content
Log in

Influence of Ag on photocatalytic performance of Ag/ZnO nanosheet photocatalysts

Ag 对二维纳米Ag/ZnO 复合材料光催化性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Ag/ZnO nanosheet composites were prepared by zinc nitrate, sodium hydroxide and silver nitrate via a simple hydrothermal method. The crystal structure, morphology, optical property and photocatalytic performance were studied by means of XRD, SEM, HRTEM, XPS, and PL methods. It is found that both the pure ZnO and composite Ag/ZnO samples have the same morphology of nanosheet. The interaction of spherical Ag particles with ZnO matrix in the Ag/ZnO sample leads to an increase in photocatalytic efficiency for the possible increase of concentration of surface hydroxyl and the photo-induced electrons and holes. The addition of Ag can reduce the recombination rate of photo-generated carriers and the sample with addition of 3 at% Ag to ZnO exhibits the best photocatalytic activity with the degradation rate up to 95% within 15 min.

摘要

使用硝酸锌、氢氧化钠和硝酸银为原料, 通过水热法制备出了Ag/ZnO 纳米复合材料; 采用 XRD、SEM、HRTEM、XPS、PL 等表征手段对复合材料的晶体结构、形貌、光学性能和光催化性能 进行了研究。测试结果表明, 纯ZnO 和Ag/ZnO 复合材料具有相同的纳米片形貌; 在Ag/ZnO 样品中, 球状Ag 粒子与ZnO 基体间的相互作用增加了复合材料的表面羟基, 降低了光激发载流子的复合率, 因此提高了光催化效率。而在所有样品中, 添加了3 at%Ag 的样品表现出了最优的光催化性能, 其在 15 min 内光催化降解率达到95%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRAMMERTZ G, BUFFIÉRE M, OUESLATI S, EIANZEERY H, MESSAOUD K B, SAHAYARAJ S, KÖBLE C, MEURIS M, POORTMANS J. Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells [J]. Applied Physics Letters, 2013, 103(16): 163904–163911.

    Article  Google Scholar 

  2. PEI Juan, FENG Kang-ning, ZHAO Xue, HAO Yan-zhong, WEI Ya-nan, SUN Bao, LI Ying-pin, CHEN Shao-rui, LV Hai-jun. ZnO-based inverted hybrid solar cells: Technical adjustment for performance optimization step by step [J]. Optics Communications, 2018, 427(15): 294–300.

    Article  Google Scholar 

  3. DAGAR J, SCAVIA G, SCARSELLI M, DESTRI S, CRESCENZI M D, BROWN T M. Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells [J]. Nanoscale, 2017, 9(48): 19031–19038.

    Article  Google Scholar 

  4. SAHA R, KARTHIK S, KUMAR P M R S A, SURIYAPRABHA R, RAJENDRAN V. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics [J]. Progress in Organic Coatings, 2018, 124: 80–91.

    Article  Google Scholar 

  5. MAHENDIRAN D, SUBASH G, SELVAN D A, REHANA D, KUMAR R S, RAHIMAN A K. Biosynthesis of zinc oxide nanoparticles using plant extracts of aloe vera and hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies [J]. Bionanoscience, 2017, 7(3): 530–545.

    Article  Google Scholar 

  6. HE Wei-wei, KIM H K, WAMER W G, MELKA D, CALLAHAN J H, YIN Jun-jie. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity [J]. Journal of the American Chemical Society, 2014, 136(2): 750–757.

    Article  Google Scholar 

  7. XU Tong-guang, ZHANG Li-wu, CHENG Han-yun, ZHU Yong-fa. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study [J]. Applied Catalysis B: Environmental, 2011, 101(3, 4): 382–387.

    Article  Google Scholar 

  8. SUN Jia-xin, YUAN Yu-peng, QIU Ling-guang, JIANG Xia, XIE An-jian, SHEN Yu-hua, ZHU Jun-fa. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light [J]. Dalton Transactions, 2012, 41(22): 6756–6763.

    Article  Google Scholar 

  9. PAN Xiao-fang, LIU Xi, BERMAK A, FAN Zhi-yong. Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors [J]. American Chemical Society: Nano, 2013, 7(10): 9318–9324.

    Google Scholar 

  10. XU Lin-hua, LI Xiang-yin, YUAN Jun. Effect of K-doping on structural and optical properties of ZnO thin films [J]. Superlattices and Microstructures, 2008, 44(3): 276–281.

    Article  Google Scholar 

  11. PRASAD N, KARTHIKEYAN B. Cu-doping and annealing effect on the optical properties and enhanced photocatalytic activity of ZnO nanoparticles [J]. Vacuum, 2017, 146: 501–508.

    Article  Google Scholar 

  12. SARAVANAN R, KARTHIKEYAN N, GUPTA V K, THIRUMAL E, THANGADURAI P, NARAYANAN V, STEPHEN A. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light [J]. Materials Science and Engineering C, 2013, 33(4): 2235–2244.

    Article  Google Scholar 

  13. PUTRI N A, FAUZIA V, IWAN S, ROZA L, UMAR A A, BUDI S. Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates [J]. Applied Surface Science, 2018, 439: 285–297.

    Article  Google Scholar 

  14. KIATTISAKSIRI P, KHAMDAHSAG P, KHEMTHONG P, PIMPHA N, GRISDANURAK N. Photocatalytic degradation of 2,4-dichlorophenol over Fe-ZnO catalyst under visible light [J]. Korean Journal of Chemical Engineering, 2015, 32(8): 1578–1585.

    Article  Google Scholar 

  15. ZHANG Jin, QUE Wen-xiu. Preparation and characterization of sol-gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method [J]. Solar Energy Materials and Solar Cells, 2010, 94(12): 2181–2186.

    Article  Google Scholar 

  16. VAIANO V, IERVOLINO G, RIZZO L. Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light [J]. Applied Catalysis B: Environmental, 2018, 238: 471–479.

    Article  Google Scholar 

  17. BECHAMBI O, JLAIEL L, NAJJAR W, SAYADI S. Photocatalytic degradation of bisphenol A in the presence of Ce-ZnO: Evolution of kinetics, toxicity and photodegradation mechanism [J]. Materials Chemistry and Physics, 2016, 173: 95–105.

    Article  Google Scholar 

  18. WANG Mei-li, HUANG Chang-gang, HUANG Zhi, GUO Wang, HUANG Ji-quan, HE Hong, WANG Hai, CAO Yong-ge, LIU Quan-lin, LIANG Jing-kui. Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method [J]. Optical Materials, 2009, 31(10): 1502–1505.

    Article  Google Scholar 

  19. FERRARI-LIMA A M, SOUZA R P, MENDES S S, MARQUES R G, GIMENES M L, FERNANDES-MACHADO N R C. Photodegradation of benzene, toluene and xylenes under visible light applying N-doped mixed TiO2 and ZnO catalysts [J]. Catalysis Today, 2015, 241: 40–46.

    Article  Google Scholar 

  20. JUNG H, PHAM T T, SHIN E W. Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect [J]. Applied Surface Science, 2018, 458: 369–381.

    Article  Google Scholar 

  21. LIU Chang-zhen, MENG Da-wei, WU Xiu-ling, WANG Yong-qian, YU Xiao-hong, ZHANG Zheng-jie, LIU Xiao-yang. Synthesis, characterization and optical properties of sheet-like ZnO [J]. Materials Research Bulletin, 2011, 46(9): 1414–1416.

    Article  Google Scholar 

  22. ZHU Guo-xing, LIU Yuan-jun, JI Zhen-yuan, BAI Song, SHEN Xiao-ping, XU Zheng. Hierarchical ZnO microspheres built by sheet-like network: Large-scale synthesis and structurally enhanced catalytic performances [J]. Materials Chemistry and Physics, 2012, 132(2, 3): 1065–1070.

    Article  Google Scholar 

  23. HONG Yu, TIAN Chun-gui, JIANG Bao-jiang, WU Ai-ping, ZHANG Qi, TIAN Guo-hui, FU Hong-gang. Facile synthesis of sheet-like ZnO assembly composed of small ZnO particles for highly efficient photocatalysis [J]. Journal of Materials Chemistry A, 2013, 1(18): 5700–5708.

    Article  Google Scholar 

  24. CONSONNI V, SARIGIANNIDOU E, APPERT E, BOCHEUX A, GUILLEMIN S, DONATINI F, ROBIN I C, KIOSEOGLOU J, ROBAUT F. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity [J]. American Chemical Society: NANO, 2014, 8(5): 4761–4770.

    Google Scholar 

  25. ABBASI M A, IBUPOTO Z H, HUSSAIN M, POZINA G, LU Jun, HULTMAN L, NUR O, WILLANDER M. Decoration of ZnO nanorods with coral reefs like NiO nanostructures by the hydrothermal growth method and their luminescence study [J]. Materials, 2014, 7(1): 430–440.

    Article  Google Scholar 

  26. LIU Jia, CAO Wen-qiang, JIN Hai-bo, YUAN Jie, ZHANG De-qing, CAO Mao-sheng. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in X-band at elevated temperature [J]. Journal of Materials Chemistry C, 2015, 3(18): 4670–4677.

    Article  Google Scholar 

  27. PHAN T L, SUN Yue-kui, VINCENT R. Structural characterization of CVD-grown ZnO nanocombs [J]. Journal of The Korean Physical Society, 2011, 59(1): 60–64.

    Article  Google Scholar 

  28. AMEEN S, AKHTAR M S, SHIN H S. Speedy photocatalytic degradation of bromophenol dye over ZnO nanoflowers [J]. Materials letters, 2017, 209: 150–154.

    Article  Google Scholar 

  29. ZHANG Li, DAI Chao-hua, ZHANG Xiu-xiu, LIU You-nian, YAN Jian-hui. Preparation and photocatalytic performance of ZnO/ZnGa2O4 composite microspheres [J]. Journal of Central South University, 2016, 23(12): 3092–3099.

    Article  Google Scholar 

  30. GU Chang-dong, CHENG Chun, HUANG Hai-you, WONG Tai-lun, WANG Ning, ZHANG Tong-yi. Growth and photocatalytic activity of dendrite-like ZnO@Agheterostructure nanocrystals [J]. Crystal Growth and Design, 2009, 9(7): 3278–3285.

    Article  Google Scholar 

  31. GAO Shu-yan, JIA Xiao-xia, YANG Shu-xiang, LI Zheng-dao, JIANG Kai. Hierarchical Ag/ZnO micro/nanostructure: green synthesis and enhanced photocatalytic performance [J]. Journal of Solid State Chemistry, 2011, 184(4): 764–769.

    Article  Google Scholar 

  32. SAHU R K, GANGULY K, MISHRA T, MISHRA M, NINGTHOUJAM R S, ROY S K, PATHAK L C. Stabilization of intrinsic defects at high temperatures in ZnO nanoparticles by Ag modification [J]. Journal of Colloid and Interface Science, 2012, 366(1): 8–15.

    Article  Google Scholar 

  33. MOULDER J F, STIKLE W F, SOBOL P E, BOMBEN K D. Handbook of X-ray photoelectron spectroscopy:a reference book of standard spectra for identification andinterpretation of XPS data [M]. Eden Prairie: Physical Electronics, Inc. 1995: 213–242.

    Google Scholar 

  34. RAMGIR N S, MULLA I S, PILLAI V K. Micropencils and microhexagonal cones of ZnO [J]. Journal of Physical Chemistry B, 2006, 110: 3995–4001.

    Article  Google Scholar 

  35. TAY Y Y, LI S, SUN C Q, CHEN P. Size dependence of Zn 2p3/2 binding energy in nanocrystalline ZnO [J]. Applied Physics Letters, 2006, 88(17): 173118.

    Article  Google Scholar 

  36. DJURISIC A B, LEUNG Y H, TAM K H, HSU Y F, DING L, GE W K, ZHONG Y C, WONG K S, CHAN W K, TAM H L, CHEAH K W, KWOK W M, PHILLIPS D L D. Defect emissions in ZnO nanostructures [J]. Nanotechnology, 2005, 18(9): 095702.

    Article  Google Scholar 

  37. TAM K H, CHEUNG C K, LEUNG Y H, DJURISIC A B, LING C C, BELING C D, FUNG S, KWOK W M, CHAN W K, PHILLIPS D L, DING L, GE W K. Defects in ZnO nanorods prepared by a hydrothermal method. [J]. Journal of Physical Chemistry B, 2006, 110(42): 20865–20871.

    Article  Google Scholar 

  38. AHN C H, KIM Y Y, KIM D C, MOHANTA S K, CHO H K. Erratum: A comparative analysis of deep level emission in ZnO layers deposited by various methods [J]. Journal of Applied Physics, 2009, 105(1): 013502.

    Article  Google Scholar 

  39. CHEN Z, LI X X, CHEN N, WANG H, DU G P, SUEN A Y M. Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol-gel method [J]. Journal of Sol-Gel Science and Technology, 2012, 62(2): 252–258.

    Article  Google Scholar 

  40. SAKAGUCHI I, PARK D, TAKATA Y, HISHITA S, OHASHI N, HANEDA H, MITSUHASHI T. An effect of annealing on In implanted ZnO [J]. Nuclear Instruments and Methods in Physics Research B, 2003, 206(3): 153–156.

    Article  Google Scholar 

  41. WANG Chao, WU Di, WANG Pei-fang, AO Yan-hui, HOU Jun, QIAN Jin. Effect of oxygen vacancy on enhanced photocatalytic activity of reduced ZnO nanorod arrays [J]. Applied Surface Science, 2015, 325: 112–116.

    Article  Google Scholar 

  42. LIU Hai-rui, HU Yan-chun, ZHANG Zhu-xia, LIU Xu-guang, JIA Hu-sheng, XU Bing-she. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation [J]. Applied Surface Science, 2015, 355: 644–652.

    Article  Google Scholar 

  43. SUN Yong-jiao, ZHAO Zhen-ting, LI Gang, LI Peng-wei, ZHANG Wen-dong, HAN Zhi-tao, LIAN Kun, HU Jie. Synthesis and characterization of Ag@ZnO nanostructures for photocatalytic degradation of rhodamine B: influence of calcination temperature and Ag content [J]. Applied Physics A, 2017, 123(2): 116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-jin Tao  (陶辉锦).

Additional information

Foundation item

Project(21373273) supported by the National Natural Science Foundation of China; Project(2019CG033) supported by the Deepening Reform Project of Innovation and Entrepreneurship Education of Central South University, China; Project(2019JG067) supported by the Graduate Education and Teaching Reform Research Project of Central South University, China; Project(201810533278) supported by the National College Students’ Innovative Experiment Project of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Zhou, S., Tao, Hj. et al. Influence of Ag on photocatalytic performance of Ag/ZnO nanosheet photocatalysts. J. Cent. South Univ. 26, 2011–2018 (2019). https://doi.org/10.1007/s11771-019-4148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4148-x

Key words

关键词

Navigation