Skip to main content
Log in

Nested Newmark model to estimate permanent displacement of seismic slopes with tensile strength cut-off

基于NNM 模型考虑土体拉伸截断的边坡地震永久位移计算方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Nested Newmark model(NNM) is a conceptual framework to assessing post-earthquake movements including dispersed shear movements. The original NNM omits that the tensile stresses would be encountered in slopes induced by earthquakes. The purpose of this study is to introduce the tensile strength cut-off and the relevant failure mechanism into NNM and conduct the limit analysis to determine the seismic displacement. Parametric studies are carried out to further investigate the influence of the tensile strength and input ground motions on permanent displacement. Neglecting the tensile strength can underestimate the permanent displacements of slopes. As the peak acceleration increases, the underestimation becomes more significant. With the reduction of tensile strength, much larger deformation occurs next to the slope crest. Although the present results are limited to an example, the method is of value in practice to predict the post-earthquake profile of slope.

摘要

嵌套式Newmark 模型(NNM)是一种考虑土体剪切运动特性的地震边坡变形计算模型, 该模型 无法考虑边坡在地震作用下土体出现拉应力屈服特性。本文将土体拉伸截断特性考虑到了NNM 模型 中, 采用极限分析上限法建立了边坡地震永久位移计算方法。通过对拉伸截断参数与地震参数的敏感 性分析, 发现忽略土体的拉伸截断会低估边坡地震永久位移。随着地震峰值加速度的增大, 拉伸截断 对边坡变形的影响将更加显著; 随着抗拉强度的减小, 地震边坡的最大变形位置逐步向坡顶靠近。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TERZAGHI K. Mechanisms of landslides [M]// Engineering Geology (Berkey) Volume. Geological Society of America, 1950.

  2. SARMA S K, BHAVE M V. Critical acceleration versus static factor of safety in stability analysis of earth dams and embankments [J]. Geotechnique, 1974, 24(4): 661–665.

    Article  Google Scholar 

  3. NEWMARK N M. Effects of Earthquakes on dams and embankments [J]. Géotechnique, 1965, 15(2): 139–160.

    Article  Google Scholar 

  4. SARMA S K. Seismic stability of earth dams and embankments [J]. Géotechnique, 1975, 25(4): 743–761.

    Article  Google Scholar 

  5. SEED H B, IDRISS I M, LEE K L, MAKDISI F L. Dynamic analysis of the slide in the lower san fernando dam during the earthquake of February 9, 1971 [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1975, 101(9): 889–911.

    Google Scholar 

  6. LEE K L. Seismic permanent deformations in earth dams, Report No. UCLA-ENG-7497 [R]. School of Engineering and Applied Science, University of California at Los Angeles, 1974.

  7. SERFF N, SEED H B, MAKDISI F I, CHANG C Y. Earthquake-induced deformations of earth dams. Report EERC 76-4 [R]. Earthquake Engineering Research Center, University of California, Berkeley, 1976.

    Google Scholar 

  8. CHUGH A K, STARK T D. Permanent seismic deformation analysis of a landslide [J]. Landslides, 2006, 3(1): 2–12.

    Article  Google Scholar 

  9. SEED H B, GOODMAN R E. Earthquake stability of slopes of cohesionless soils [J]. Journal of Soil Mechanics & Foundations Div, 1964, 90(5): 43–68.

    Google Scholar 

  10. WARTMAN J, SEED R B, BRAY J D. Shaking table modeling of seismically induced deformations in slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 610–622.

    Article  Google Scholar 

  11. KUTTER B L, JAMES R G. Dynamic centrifuge model tests on clay embankments [J]. Géotechnique, 1989, 39(1): 91–106.

    Article  Google Scholar 

  12. LING H I, LESHCHINSKY D. Seismic performance of simple slopes [J]. Soils and Foundations, 1995, 35(2): 85–94.

    Article  Google Scholar 

  13. YOU L, MICHALOWSKI R L. Displacement charts for slopes subjected to seismic loads [J]. Computers and Geotechnics, 1999, 25(1): 45–55.

    Article  Google Scholar 

  14. LESHCHINSKY B. Nested Newmark model to calculate the post-earthquake profile of slopes [J]. Engineering Geology, 2018, 233(1): 139–145.

    Article  Google Scholar 

  15. YANG X L, HUANG F. Slope stability analysis considering joined influences of nonlinearity and dilation [J]. Journal of Central South University of Technology, 2009, 16(2): 292–296.

    Article  Google Scholar 

  16. ZHANG D B, JIANG Y, YANG X L. Estimation of 3D active earth pressure under nonlinear strength condition [J]. Geomechanics and Engineering, 2019, 17(6): 515–525.

    Google Scholar 

  17. UTILI S, ABD A H. On the stability of fissured slopes subject to seismic action [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5): 785–806.

    Article  Google Scholar 

  18. MICHALOWSKI R L. Stability of intact slopes with tensile strength cut-off [J]. Géotechnique, 2017, 67(8): 720–727.

    Article  Google Scholar 

  19. DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics, 1952, 10(2): 157–165.

    Article  MathSciNet  MATH  Google Scholar 

  20. BAKER R, GARBER M. Theoretical analysis of the stability of slopes [J]. Géotechnique, 1978, 28(4): 395–411.

    Article  Google Scholar 

  21. LESHCHINSKY D, BAKER R, SILVER M L. Three dimensional analysis of slope stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(3): 199–223.

    Article  MathSciNet  MATH  Google Scholar 

  22. HUANG C, WU S H, WU H J. Seismic displacement criterion for soil retaining walls based on soil strength mobilization [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1): 74–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhang  (张飞).

Additional information

Foundation item

Projects(41630638, 51878248) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, F., Gao, Yf. et al. Nested Newmark model to estimate permanent displacement of seismic slopes with tensile strength cut-off. J. Cent. South Univ. 26, 1830–1839 (2019). https://doi.org/10.1007/s11771-019-4137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4137-0

Key Words

关键词

Navigation