Skip to main content
Log in

An enhanced image binarization method incorporating with Monte-Carlo simulation

基于蒙特卡洛模拟的图像二值化增强算法

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

We proposed an enhanced image binarization method. The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background, spatially-changed illumination, and uncertainties of block size in traditional method. The proposed method first partitions the image into square blocks that reflect local characteristics of the image. After image partitioning, each block is binarized using Otsu's thresholding method. To minimize the influence of the block size and the boundary effect, we incorporate Monte-Carlo simulation into the binarization algorithm. Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map, which illustrates the probability of each pixel classified as foreground. By setting a probability threshold, and separating foreground and background of the source image, the final binary image can be obtained. The described method has been tested by benchmark tests. Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.

摘要

本文基于蒙特卡洛模拟与局部阈值思想,提出了一种能够适应图像复杂背景、亮度不均条件的 灰阶图像二值化分割方法。该方法将灰阶图像划分为多个正方形子图像,每个子图像均反映了灰阶图 像的局部信息。先利用大津法对每个子图像进行二值化分割,再将所有二值化后的子图像重新合并后 形成灰阶图像的二值化结果。针对局部阈值分割过程中子图像的尺寸选取问题及二值化后子图像合并 时的边界效应问题,本文结合蒙特卡洛模拟思想提出了改进算法。将子图像尺寸作为蒙特卡洛计算步 中的随机变量,通过大量迭代计算获取灰阶图像中每个像素被分割为目标和背景的概率,并按照指定 概率阈值对其进行划分。为验证所述方法的可行性与准确性,本文依托多个灰阶图像案例对方法的二 值化结果进行了测试,结果表明,本文提出的方法能够较好地处理复杂背景及亮度不均条件下的灰阶 图像。本方法可为区域性遥感影像的解译和地物识别提供支撑。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STATHIS P, KAVALLIERATOU E, PAPAMARKOS N. An evaluation technique for binarization algorithms [J]. J Univ Comput Sci, 2008, 14(8): 3011–3030.

    Google Scholar 

  2. BRADELY D, ROTH G. Adaptive thresholding using the integral image [J]. Journal of Graphics Tools, 2011, 12(2): 13–21.

    Article  Google Scholar 

  3. KEFALI A, SARI T, SELLAMI M. Evaluation of several binarization techniques for old Arabic documents images [C]// The First Internat Symp on Modeling and Implementing Complex Systems (MISC 2010). Constantine, Algeria: Springer, 2010: 88–99.

    Google Scholar 

  4. SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [J]. J Electron Imaging, 2004, 13(1): 146–168.

    Article  Google Scholar 

  5. BATAINEH B, ABDULLAH S N H S, OMAR K. An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows [J]. Pattern Recognition Letters, 2011, 32: 1805–1813.

    Article  Google Scholar 

  6. WEN J T, LI S M, SUN J D. A new binarization method for non-uniform illuminated document images [J]. Pattern Recognition, 2013, 46: 1670–1690.

    Article  Google Scholar 

  7. OTSU N. A Threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1): 62–66.

    Article  Google Scholar 

  8. PAI Y T, CHANG Y F, RUAN S J. Adaptive thresholding algorithm: Efficient computation technique based on intelligent block detection for degraded document images [J]. Pattern Recognition, 2010, 43: 3177–3187.

    Article  MATH  Google Scholar 

  9. POLETTI E, ZAPPELLI F, RUGGERI A, GRISAN E. A review of thresholding strategies applied to human chromosome segmentation [J]. Computer Methods and Programs in Biomedicine, 2012, 108(2): 679–688.

    Article  Google Scholar 

  10. LI Y G, CHEN G Q, HAN Z, ZHANG F L. A hybrid automatic thresholding approach using panchromatic image for rapid mapping of landslides [J]. GIScience and Remote Sensing, 2014, 51: 710–730.

    Article  Google Scholar 

  11. GATOS B, PRATIKAKIS I, PERANTONIS S J. Adaptive degraded document image binarization [J]. Pattern Recognition, 2006, 39: 317–327.

    Article  MATH  Google Scholar 

  12. BERNSEN J. Dynamic thresholding of gray-level images [C]// Proceedings of the Eighth International Conference on Pattern Recognition. Paris, France: IEEE Computer Society Press, 1986: 1251–1255.

    Google Scholar 

  13. YANOWITZ S D, BRUCKSTEIN A M. A new method for image segmentation [J]. Computer Vision Graphical and Image Processing, 1989, 46(1): 82–95.

    Article  Google Scholar 

  14. TAXT T, FLYNN P J, JAIN A K. Segmentation of document images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(12): 1322–1329.

    Article  Google Scholar 

  15. NIBLACK W. An introduction to digital image processing [M]. New Jersey: Prentice Hall, 1986.

    Google Scholar 

  16. EIKVIL L, TAXT T, MOEN K. A fast adaptive method for binarization of document images [C]// Proceedings of the ICDAR-91, Saint Malo, France: AFCET, 1991: 435–443.

    Google Scholar 

  17. SAUVOLA J, PIETIKAINEN M, Adaptive document image binarization [J]. Pattern Recognition, 2000, 33(2): 225–236.

    Article  Google Scholar 

  18. CHOU C, LIN A W, CHANG A F. A binarization method with learning-built rules for document images produced by cameras [J]. Pattern Recognition, 2010, 43: 1518–1530.

    Article  MATH  Google Scholar 

  19. TONG L, CHEN K, ZHANG Y, FU X, DUAN J. Document image binarization based on NFCM [C]// Proceedings of the 2nd Internat Congress on Image and Signal Processing. New York: IEEE eXpress, 2009: 5305330.

    Google Scholar 

  20. ZHANG C, YANG J. Binarization of document images with complex background [C]// Proceedings of the 6th Internat Conf in Wireless Communications Networking and Mobile Computing. New York: IEEE eXpress, 2010: 5601007.

    Google Scholar 

  21. GATOS B, NTIROGIANNIS K, PRATIKAKIS I. DIBCO 2009: Document image binarization contest [J]. Int J Doc Anal Recognit, 2011, 14: 35–44.

    Article  Google Scholar 

  22. KHURSHID K, SIDDIQI I, FAURE C, VINCENT N. Comparison of Niblack inspired binarization methods for ancient documents [C]// Proceeding of 16th International Conference on Document Recognition and Retrieval. California: SPIE, 2009: 72470U.

    Chapter  Google Scholar 

  23. TRIER O D, JAIN A K. Goal-directed evaluation of binarization methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(12): 1191–1201.

    Article  Google Scholar 

  24. HAN Z, LI Y G, DU Y F, WANG W D, CHEN G Q. Noncontact detection of earthquake-induced landslides by an enhanced image binarization method incorporating with Monte-Carlo simulation [J]. Geomatics, Natural Hazards and Risks, 2019, 10(1): 219–241.

    Article  Google Scholar 

  25. HAN Z, WANG W D, LI Y G, HUANG J L, SU B, TANG C, CHEN G Q, QU X. An integrated method for rapid estimation of the valley incision by debris flows [J]. Engineering Geology, 2018, 232: 34–45.

    Article  Google Scholar 

  26. MOTL J. Niblack local thresholding [EB/OL]. [2013-5-10]. https://cn.mathworks.com/matlabcentral/fileexchange/40849-niblack-local-thresholding.

    Google Scholar 

  27. HADJAJD Z, CHERIET M, MEZIANE A, CHERFA Y. A new efficient binarization method: application to degraded historical document images [J]. SIViP, 2017, 11: 1155–1162.

    Article  Google Scholar 

  28. XIONG G L. Local adaptive thresholding [EB/OL]. [2016-03-31]. https://cn.mathworks.com/matlabcentral/fileexchange/8647-local-adaptive-thresholding.

    Google Scholar 

  29. MARTÍN-RODRÍGUEZ F. New tools for gray level histogram analysis, applications in segmentation [C]// Proceeding of the 10th International Conference of Image Analysis and Recognition. Portugal: Springer, 2013: 326–335.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ge Li  (李艳鸽).

Additional information

Foundation item Project(2018YFC1505401) supported by the National Key R&D Program of China; Project(41702310) supported by the National Natural Science Foundation of China; Project(SKLGP2017K014) supported by the Foundation of State Key Laboratory of Geohazard Prevention and Geo-environment Protection, China; Project(2018JJ3644) supported by the Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Su, B., Li, Yg. et al. An enhanced image binarization method incorporating with Monte-Carlo simulation. J. Cent. South Univ. 26, 1661–1671 (2019). https://doi.org/10.1007/s11771-019-4120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4120-9

Key words

关键词

Navigation