Skip to main content
Log in

Nonlinear cascade control of single-rod pneumatic actuator based on an extended disturbance observer

基于扩展干扰观测器的单杆气缸非线性级联控制

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed. The proposed controller comprises an extended disturbance observer (EDOB) and a nonlinear robust control law synthesized by the backstepping method. The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties. With the use of parameter and disturbance estimates, the nonlinear cascade controller, which consists of an outer position tracking loop and an inner load pressure loop, is further designed to attenuate the effects of parameter and disturbance estimation errors. The stability of the closed-loop system is proven by means of Lyapunov theory. Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.

摘要

为实现对单杆气缸活塞运动轨迹的精确控制,本文提出了一种基于扩展干扰观测器的非线性级 联控制方法,利用扩展干扰观测器估计干扰与未知模型参数信息,通过非线性鲁棒控制律抑制参数与 干扰估计误差、未建模动态的影响。该级联控制器由内环压力控制回路和外环位置回路两部分组成, 分别采用滑模控制理论进行设计,利用Lyapunov 理论证明了闭环系统的稳定性。试验表明,所设计 的控制器能获得良好的轨迹跟踪控制性能,对干扰和系统参数变化具有较强的性能鲁棒性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HUANG C, CHEN J. On the implementation and control of a pneumatic power active lower-limb orthosis [J]. Mechatronics, 2013, 23(5): 505–517. DOI: 10.1016/ j.mechatronics.2013.04.005.

    Article  Google Scholar 

  2. BONE G M, XUE M, FLETT J. Position control of hybrid pneumatic-electric actuators using discrete-valued model-predictive control [J]. Mechatronics, 2015, 25(2): 1–10. DOI: 10.1016/j.mechatronics.2014.10.009.

    Article  Google Scholar 

  3. GIRIN A, PLESTAN F, BRUN X, GLUMINEAU A. High order sliding-mode controllers of an electropneumatic actuator: Application to an aeronautic benchmark [J]. IEEE Transactions on Control Systems Technology, 2009, 17(3): 633–645. DOI: 10.1109/TCST.2008.2002950.

    Article  Google Scholar 

  4. RICHER E, HURMUZLU Y. A high performance pneumatic force actuator system: Part I-Nonlinear mathematical model [J]. Journal of Dynamic Systems Measurement & Control, 2001, 122(3): 416–425. DOI: 10.1115/1.1286336.

    Article  Google Scholar 

  5. BEATER P. Pneumatic Drives [M]. Berlin: Springer, 2007.

    Book  Google Scholar 

  6. RICHARD E, SCAVARDA S. Comparison between linear and nonlinear control of an electro pneumatic servo drive [J]. Journal of Dynamic Systems Measurement & Control, 1996, 118(2): 245–252. DOI: 10.1115/1.2802310.

    Article  MATH  Google Scholar 

  7. TAGHIZADEH M, NAJAFI F, GHAFFARI A. Multimodel PD-control of a pneumatic actuator under variable loads [J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(5–8): 655–662. DOI: 10.1007/s00170 -009-2293-3.

    Article  Google Scholar 

  8. KHAYATI K, BIGRAS P, DESSAINT L A. LuGre model based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via Lmi optimization [J]. Mechatronics, 2009, 19(4): 535–547. DOI: 10.1016/j.mechatronics.2008.12.006.

    Article  Google Scholar 

  9. XIANG F, WIKANDER J. Block-oriented approximate feedback linearization for control of pneumatic actuator systems [J]. Control Engineering Practice, 2004, 12(4): 387–399. DOI: 10.1016/S0967-0661(03)00104-7.

    Article  Google Scholar 

  10. LEE H K, CHOI G S, CHOI G H. A study on tracking position control pneumatic actuators [J]. Mechatronics, 2002, 12(6): 813–831. DOI: 10.1016/S0957-4158(01)00024-1.

    Article  Google Scholar 

  11. TANAKA K, YAMADA Y, SAKAMOTO M, UCHIKADO S. Model reference adaptive control with neural network for electro-pneumatic servo system [C]// Proceedings of the IEEE International Conference on Control Applications. Italy: IEEE, 1998: 1130–1134. DOI: 10.1109/CCA.1998.721633.

    Google Scholar 

  12. RICHARDSON R, PLUMMER A R, BROWN M D. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity [J]. IEEE Transactions on Control Systems Technology, 2001, 9(2): 330–334. DOI: 10.1109/87.911384.

    Article  Google Scholar 

  13. BONE G M, NING S. Experimental comparison of position tracking control algorithms for pneumatic cylinder actuators [J]. IEEE/Asme Transactions on Mechatronics, 2007, 12(5): 557–561. DOI: 10.1109/TMECH.2007.905718.

    Article  Google Scholar 

  14. SMAOUI M, BRUN X, THOMASSET D. Systematic control of an electropneumatic system: Integrator back-stepping and sliding mode control [J]. IEEE Transactions on Control Systems Technology, 2006, 14(5): 905–913. DOI: 10.1109/TCST.2006.880183.

    Article  Google Scholar 

  15. RAO Z, BONE G M. Nonlinear modeling and control of servo pneumatic actuators [J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 562–569. DOI: 10.1109/ TCST.2007.912127.

    Article  Google Scholar 

  16. PLESTAN F, SHTESSEL Y, BREGEAULT V, POZNYAK A. Sliding mode control with gain adaptation-Application to an electro pneumatic actuator [J]. Control Engineering Practice, 2013, 21(5): 679–688. DOI: 10.1016/j.conengprac.2012.04. 012.

    Article  Google Scholar 

  17. SHTESSEL Y, TALEB M, PLESTAN F. A novel adaptive-gain supertwisting sliding mode controller: Methodology and application [J]. Automatica, 2012, 48(5): 759–769. DOI: 10.1016/j.automatica.2012.02.024.

    Article  MathSciNet  MATH  Google Scholar 

  18. LEE L W, LI I H. Wavelet-based adaptive sliding-mode control with H∞ tracking performance for pneumatic servo system position tracking control [J]. Iet Control Theory and Applications, 2012, 6(11): 1699–1714. DOI: 10.1049/iet-cta. 2011.0434.

    Article  MathSciNet  Google Scholar 

  19. SMAOUI M, BRUN X, THOMASSET D. A study on tracking position control of an electro pneumatic system using backstepping design [J]. Control Engineering Practice, 2006, 14(8): 923–933. DOI: 10.1016/j.conengprac.2005.05. 003.

    Article  Google Scholar 

  20. TSAI Y, HUANG A. Multiple-surface sliding controller design for pneumatic servo systems [J]. Mechatronics, 2008, 18(9): 506–512. DOI: 10.1016/j.mechatronics.2008.03.006.

    Article  MathSciNet  Google Scholar 

  21. LU C, HWANG Y, SHEN Y. Backstepping sliding-mode control for a pneumatic control system [J]. Proc IMechE Part I: Journal of Systems and Control Engineering, 2010, 224(6): 763–770. DOI: 10.1243/09596518JSCE992.

    Google Scholar 

  22. CARNEIRO J, ALMEIDA F. A high-accuracy trajectory following controller for pneumatic devices [J]. International Journal of Advanced Manufacturing Technology, 2012, 61(1): 253–267. DOI: 10.1007/s00170-011-3695-6.

    Article  MathSciNet  Google Scholar 

  23. CARNEIRO J, ALMEIDA F. Accurate motion control of a servo pneumatic system using integral sliding mode control [J]. International Journal of Advanced Manufacturing Technology, 2015, 77(9): 1533–1548. DOI: 10.1007/s00170-014-6518-8.

    Article  Google Scholar 

  24. MENG D, TAO G, ZHU X. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders [J]. International Journal of Control, 2013, 86(9): 1620–1633. DOI: 10.1080/00207179.2013. 792002.

    Article  MathSciNet  MATH  Google Scholar 

  25. MENG D, TAO G, LI A, LI W. Precision synchronization motion trajectory tracking control of multiple pneumatic cylinders [J]. Asian Journal of Control, 2016, 18(5): 1749–1764. DOI: 10.1002/asjc.1269.

    Article  MathSciNet  MATH  Google Scholar 

  26. MENG D, TAO G, LI A, LI W. Motion synchronization of dual-cylinder pneumatic servo systems with integration of adaptive robust control and cross-coupling approach [J]. Journal of Zhejiang University-Science C (Computers and Electronics), 2014, 15(8): 651–663. DOI: 10.1631/jzus. C1300360.

    Article  Google Scholar 

  27. LI S, YANG J, CHEN W, CHEN X. Disturbance observer-based control: Methods and applications [M]. New York: Taylor and Francis, 2014.

    Google Scholar 

  28. CHEN W, YANG J, GUO L, LI S. Disturbance-observer-based control and related methods-An overview [J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083–1095. DOI: 10.1109/TIE.2015.2478397.

    Article  Google Scholar 

  29. GUO K, WEI J, TIAN Q. Nonlinear adaptive position tracking of an electro-hydraulic actuator [J]. Proc IMechE Part C: Journal of Mechanical Engineering Science, 2015, 229(17): 3252–3265. DOI: 10.1177/0954406214568821.

    Article  Google Scholar 

  30. WOM D, KIM W, SHIN D, CHUNG C. High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems [J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 787–795. DOI: 10.1109/TCST.2014.2325895.

    Article  Google Scholar 

  31. XU Z, MA D, YAO J, ULLAH N. Feedback nonlinear robust control for hydraulic system with disturbance compensation [J]. Proc. IMechE Part I: Journal of Systems and Control Engineering, 2016, 230(9): 978–987. DOI: 10.1177/ 0959651816661450.

    Google Scholar 

  32. GUO K, WEI J, FANG J. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer [J]. Mechatronics, 2015, 27(4): 47–56. DOI: 10.1016/j.mechatronics.2015.02.003.

    Article  Google Scholar 

  33. GUO Q, ZHANG Y, CELLER B, SU S. Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown [J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6909–6920. DOI: 10.1109/TIE.2016.2585080.

    Article  Google Scholar 

  34. GUO Q, YIN J, YU T, JIANG D. Coupled-disturbance-observer-based position tracking control for a cascade electro-hydraulic system [J]. ISA Transactions, 2017, 68(5): 367–380. DOI: 10.1016/j.isatra.2017.02.014.

    Article  Google Scholar 

  35. PI Y, WANG X. Observer-based cascade control of a 6-Dof parallel hydraulic manipulator in joint space coordinate [J]. Mechatronics, 2010, 20(6): 648–655. DOI: 10.1016/ j.mechatronics.2010.07.002.

    Article  Google Scholar 

  36. GUO Q, YIN J, YU T, JIANG D. Saturated adaptive control of electrohydraulic actuator with parametric uncertainty and load disturbance [J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 7930–7941. DOI: 10.1109/ TIE.2017. 2694352.

    Article  Google Scholar 

  37. ASCHEMANN H, SCHINDELE D. Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators [J]. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3855–3864. DOI: 10.1109/TIE.2008.2003202.

    Article  Google Scholar 

  38. HUANG W, LIU C, HSU P, YEH S. Precision control and compensation of servomotors and machine tools via the disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 420–429. DOI: 10.1109/TIE.2009. 2034178.

    Article  Google Scholar 

  39. CARNEIRO J, ALMEIDA F. Reduced order thermodynamic models for servopneumatic actuator chambers [J]. Proc IMechE Part I: Journal of Systems and Control Engineering, 2006, 220(4): 301–304. DOI: 10.1243/09596518JSCE203.

    Google Scholar 

  40. MENG D, TAO G, CHEN J, BAN W. Modeling of a pneumatic system for high-accuracy position control [C]// Proceedings of the International Conference on Fluid Power and Mechatronics. China: IEEE, 2011: 505–510. DOI: 10.1109/FPM.2011.6045817.

    Google Scholar 

  41. GOODWIN G C, MAYNE D Q. A parameter estimation perspective of continuous time model reference adaptive control [J]. Automatica, 1989, 23(1): 57–70. DOI: 10.1016/ 0005-1098(87)90118-X.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-yuan Meng  (孟德远).

Additional information

Foundation item: Project(51505474) supported by the National Natural Science Foundation of China; Project(2015XKMS020) supported by the Fundamental Research Funds for the Central Universities, China; Project(2016T90520) supported by the China Postdoctoral Science Foundation; Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Am., Meng, Dy., Lu, B. et al. Nonlinear cascade control of single-rod pneumatic actuator based on an extended disturbance observer. J. Cent. South Univ. 26, 1637–1648 (2019). https://doi.org/10.1007/s11771-019-4118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4118-3

Key words

关键词

Navigation