Skip to main content
Log in

Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries

简单固相法合成锂离子电池用Na2FePO4F/C 复合材料

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Using low-cost FePO4·2H2O as iron source, Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method. The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks, indicating high crystalline and phase purity. The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm, and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm. The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles. Using lithium metal as anode, the composite delivers a discharge capacities of 102.8, 96.4 and 90.3 mA·h/g at rates of 0.5C, 1C and 2C, respectively. After 100 cycles at 0.5C, a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%. The Li+ diffusion coefficient (D) of Na2FePO4F/C composite is calculated as 1.71×10−9 cm2/s. This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.

摘要

选用二水合磷酸铁为铁源, 经乙醇辅助球磨和固相反应制备了氟磷酸亚铁钠/碳复合材料。 X- 射线衍射证实产品有高的结晶度和相纯度。 扫描电镜和透射电镜照片显示, 球形氟磷酸亚铁钠粒子的 粒径分布在 50~300 nm 之间; 从高分辨透射电镜图可以看出, 在氟磷酸亚铁钠/碳复合材料的表面包 覆了一层厚度为 3.6 nm 的碳层。碳层的包覆能有效地遏制氟磷酸亚铁钠粒子的长大及粒子的团聚。 以 锂片作为负极组装半电池, 在 0.5C,1C,2C 倍率下,复合材料的放电比容量分别为 102.8,96.4, 90.3 mA·h/g。0.5C 循环 100 次后电池的放电比容量为 98·9 mA·h/g,容量保持率为 96.2%。 从循环伏 安曲线计算得到氟磷酸亚铁钠/碳复合材料的锂离子扩散系数为 1.71×10−9 cm2/s。 显然, 固相法是制备 锂离子电池正极材料用氟磷酸亚铁钠/C 复合材料的有效方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective [J]. Journal of the American Chemical Society, 2013, 135(4): 1167–1176.

    Article  Google Scholar 

  2. ZHANG Ye, BAI Wen-yu, CHENG Xun-liang, REN Jing, WENG Wei, CHEN Pei-ning, FANG Xin, ZHANG Zhi-tao, PENG Hui-sheng. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs [J]. Angew Chem Int Ed, 2014, 53: 14564–14568.

    Article  Google Scholar 

  3. DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices [J]. Science, 2011, 334: 928–935.

    Article  Google Scholar 

  4. LI Wen-liang, NI Er-fu, LI Xin-hai, GUO Hua-jun. Effect of binary conductive additive mixtures on electrochemical performance of polyoxomolybdate as cathode material of lithium ion battery. [J]. Journal of Central South University, 2016, 23: 2506–2512.

    Article  Google Scholar 

  5. LI Hong, WANG Zhao-xiang, CHEN Li-quan, HUANG Xue-jie. Research on advanced materials for Li-ion batteries [J]. Advanced Materials, 2009, 21: 4593–4607.

    Article  Google Scholar 

  6. ANTOLINI E. LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties [J]. Solid State Ionics, 2004, 170(1): 159–171.

    Article  Google Scholar 

  7. LEE M J, LEE S H, OH P, KIM Y S, CHO J. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries [J]. Nano Lett, 2014, 14(2): 993–999.

    Article  Google Scholar 

  8. YANG Jin-li, WANG Jia-jun, TANG Yong-ji, WANG Dong-niu, LI Xi-fei, HU Yu-hai, LI Ru-ying, LIANG Guo-xian, SHAM T K, SUN Xue-liang. LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: Impact of stacked graphene and unfolded graphene [J]. Energy Environ Sci, 2013, 6: 1521–1528.

    Article  Google Scholar 

  9. HOU Hong-shuai, CRAIG E B, JING Ming-jun, ZHANG Yan, JI Xiao-bo. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life [J]. Advanced Materials, 2015, 27: 7861–7866.

    Article  Google Scholar 

  10. HOU Hong-shuai, SHAO Li-dong, ZHANG Yan, ZOU Guo-qiang, CHEN Jun, JI Xiao-bo. Energy storage: Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries [J]. Advanced Science, 2017, 4: 1600243.

    Article  Google Scholar 

  11. ZHAO Gang-gang, ZHANG Yang, YANG Li, JIANG Yun-ling, ZHANG Yu, HONG Wan-wan, TIAN Ye, ZHAO Hong-bo, HU Jiu-gang, ZHOU Liang, HOU Hong-shuai, JI Xiao-bo, MAI Li-qiang. Nickel chelate derived NiS2 decorated with bifunctional carbon: An efficient strategy to promote sodium storage performance [J]. Advanced Functional Materials, 2018, 28: 1803690.

    Article  Google Scholar 

  12. DENG Ming-xiang, LI Si-jie, HONG Wan-wan, JIANG Yun-ling, XU Wei, SHUAI Hong-lei, ZOU Guo-qiang, HUA Yun-chu, HOU Hong-shuai, WANG Wen-lei, JI Xiao-bo. Octahedral Sb2O3 as high-performance anode for lithium and sodium storage [J]. Materials Chemistry and Physics, 2019, 223: 46–52.

    Article  Google Scholar 

  13. XUE Xia, SUN Dan, ZENG Xian-guang, HUANG Xiao-bing, ZHANG He-he, TANG You-gen, WANG Hai-yan. Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries [J]. Journal of Central South University, 2018, 25: 2320–2331.

    Article  Google Scholar 

  14. SHIGETO O, TAKAHASHI Y, KIYABU T, DOI T, YAMAKI J I, NISHIDA T. Layered transition metal oxides as cathodes for sodium secondary battery [J]. Ecs Meeting Abstracts, 2006, 602: 201.

    Google Scholar 

  15. YAMADA Y, DOI T, TANAKA I, OKADA S, YAMAKI J I. Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries [J]. Journal of Power Sources, 2011, 196: 4837–4841.

    Article  Google Scholar 

  16. LIU Yong-chang, ZHANG Ning, WANG Fan-fan, LIU Xiao-bin, JIAO Li-fang, FAN Li-zhen. Approaching the downsizing limit of maricite NaFePO4 toward highperformance cathode for sodium-ion batteries [J]. Adv Funct Mater, 2018, 28: 1801917–1801925.

    Article  Google Scholar 

  17. RECHAM N, CHOTARD J N, DUPONT L, DJELLAB K, ARMAND M, TARASCON J M, Ionothermal synthesis of sodium-based fluorophosphate cathode materials [J]. Journal of the Electrochemical Society, 2009, 156: A993–A999.

    Article  Google Scholar 

  18. ELLIS B L, MAKAHNOUK W R, MAKIMURA Y, TOGHILL K, NAZAR L F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J]. Nature Materials, 2007, 6: 749–753.

    Article  Google Scholar 

  19. ELLIS B L, MAKAHNOUK W R M, ROWAN- WEETALUKTUK W N, RYAN D H, NAZAR L F. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A=Na, Li; M=Fe, Mn, Co, Ni) [J]. Chemistry of Materials, 2010, 22: 1059–1070.

    Article  Google Scholar 

  20. WU Xiao-biao, ZHENG Jian-ming, GONG Zheng-liang, YANG Yong. Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1-xMnxPO4F/C (x=0, 0.1, 0.3, 0.7, 1) composite as cathode materials for Lithium ion battery [J]. Journal of Materials Chemistry, 2011, 21: 18630–18637.

    Article  Google Scholar 

  21. ZHOU Jing-jing, ZHOU Jie-feng, TANG Yuan-hao, BI Yu-jing, WANG Chen-yun, WANG De-yu, SHI Si-qi. Synthesis of Na2FePO4F/C and its electrochemical performance [J]. Ceramics International, 2013, 39: 5379–5385.

    Article  Google Scholar 

  22. SONG Wei-xin, JI Xiao-bo, WU Zheng-ping, ZHU Yi-rong, YAO Yin-peng, HUANGFU K, CHEN Qi-yuan, BANKS C E. Na2FePO4F cathode utilized in hybrid-ion batteries: A mechanistic exploration of ion migration and diffusion capability [J]. Journal of Materials Chemistry A, 2014, 2: 2571.

    Article  Google Scholar 

  23. ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries [J]. Chemistry of Materials, 2010, 22: 691–714.

    Article  Google Scholar 

  24. BARKER J, SAIDI M Y, SWOYER J L. A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J]. Electrochemical and Solid-State Letters, 2003, 6: A1–A4.

    Article  Google Scholar 

  25. SONG Wei-xin, LIU Su-qin. A sodium vanadium threefluorophosphate cathode for rechargeable batteries synthesized by carbothermal reduction [J]. Solid State Sciences, 2013, 15: 1–6.

    Article  Google Scholar 

  26. KAWABE Y, YABUUCHI N, KAJIYAMA M, FUKUHARA N, INAMASU T, OKUYAMA R, NAKAI I, KOMABA S. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries [J]. Electrochemistry Communications, 2011, 13: 1225–1228.

    Article  Google Scholar 

  27. BRISBOIS M, CAES S, SOUGRATI M T, VERTRUYEN B, SCHRIJNEMAKERS A, CLOOTS R, ESHRAGHI N, HERMANN R P, MAHMOUD A, BOSCHINI F. Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: Operando Mössbauer study of spray-dried composites [J]. Solar Energy Materials and Solar Cells, 2016, 148: 67–72.

    Article  Google Scholar 

  28. KABALOV Y K, SIMONOV M A, BELOV N V. The crystal structure of sodium iron orthophosphate Na2Fe(PO4)(OH) [J]. Doklady Akademii Nauk SSSR, 1974, 215: 850–853.

    Google Scholar 

  29. SWAFFORD S H, HOLT E M. New synthetic approaches to monophosphate fluoride ceramics: Synthesis and structural characterization of Na2Mg(PO4)F and Sr5(PO4)3F [J]. Solid State Sciences, 2002, 4: 807–812.

    Article  Google Scholar 

  30. SANZ F, PARADA C, RUIZ- VALERO C. Crystal growth, crystal structure and magnetic properties of disodium cobalt fluorophosphate [J]. Journal of Materials Chemistry, 2001, 11: 208–211.

    Article  Google Scholar 

  31. AVDEEV M, LING C D, TAN T T, LI S, OYAMA G, YAMADA A, BARPANDA P. Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F [J]. Inorganic Chemistry, 2014, 53: 682–684.

    Article  Google Scholar 

  32. TRIPATHI R, WOOD S M, ISLAM M S, NAZAR L F. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 [J]. Energy & Environmental Science, 2013, 6: 2257–2264.

    Article  Google Scholar 

  33. CUI Dong-ming, CHEN Sha-sha, HAN Chang, AI Changchun, YUAN Liang-jie. Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries [J]. Journal of Power Sources, 2016, 301: 87–92.

    Article  Google Scholar 

  34. BRISBOIS M, KRINS N, HERMANN R P, SCHRIJNEMAKERS A, CLOOTS R, VERTRUYEN B, BOSCHINI F. Spray-drying synthesis of Na2FePO4F/carbon powders for lithium-ion batteries [J]. Materials Letters, 2014, 130: 263–266.

    Article  Google Scholar 

  35. SONG Wei-xin, JI Xiao-bo, WU Zheng-ping, ZHU Yi-rong, LI Fang-qian, YAO Yin-peng, BANKS C E. Multifunctional dual Na3V2(PO4)2F3 cathode for both lithium-ion and sodium-ion batteries [J]. RSC Advances, 2014, 4: 11375–11383.

    Article  Google Scholar 

  36. RUI X H, DING N, LIU J, LI C, CHEN C H. Analysis of the chemical diffusion coefficient of Lithium ions in Li3V2(PO4)3 cathode material [J]. Electrochimi Acta, 2010, 55: 2384–2390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-you Wang  (王先友).

Additional information

Foundation item: Projects(51472211, 51502256) supported by the National Natural Science Foundation of China; Projects(2016GK4005, 2016GK4030) supported by the Strategic New Industry of Hunan Province, China; Project(13C925) supported by the Research Foundation of Education Bureau of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wang, Y., Huang, Y. et al. Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries. J. Cent. South Univ. 26, 1521–1529 (2019). https://doi.org/10.1007/s11771-019-4108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4108-5

Keywords

关键词

Navigation