Skip to main content
Log in

Synthesis of spherical tremella-like Sb2O3 structures derived from metal-organic framworks and its lithium storage properties

MOF 衍生的球形银耳状Sb2O3 结构的合成及其储锂性能

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks (MOFs) method under a mild liquid-phase reaction condition, and was further employed as an anode material for lithium-ion batteries (LIBs). The effect of reaction temperature and time on morphologies of Sb2O3 was studied. The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area. When the tremella-like Sb2O3 was used as LIBs anode, the discharge and charge capacities can achieve 724 and 446 mA.h/g in the first cycle, respectively. Moreover, the electrode retains an impressive high capacity of 275 mA-h/g even after 50 cycles at 20 mA/g, indicating that the material is extremely promising for application in LIBs.

摘要

在液相反应条件下通过MOFs 制备了一种新颖的球形银耳状的Sb2O3 材料,并将其用作锂离子 电池(LIBs)的负极材料。探究了反应温度和时间对Sb2O3 形貌的影响,通过SEM 和TEM 的结果表明, 银耳状Sb2O3 结构是由许多具有高比表面积的纳米片组成。当银耳状Sb2O3 用作LIBs 负极时,首次放 电和充电容量分别达到724 和446 mA∙h/g。 在20 mA/g 的电流密度下循环50 圈后,电极仍保持275 mA∙h/g 的高容量,因此该材料极有希望应用于LIBs。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JI Li-wen, LIN Zhan, ALCOUTLABI M, ZHANG Xiang-wu. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy Environmental Science, 2011, 4(8): 2682–2699.

    Article  Google Scholar 

  2. WU Hao-bin, CHEN Jun-song, HNG Huey-hoon, LOU Xiong-wen. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries [J]. Nanoscale, 2012, 4(8): 2526–2542.

    Article  Google Scholar 

  3. SHI Chong-fu, XIANG Kai-xiong, ZHU Yi-rong, CHEN Xian-hong, ZHOU Wei, CHEN Han. Preparation and electrochemical properties of nanocable-like Nb2O5/ surface-modified carbon nanotubes composites for anode materials in lithium ion batteries [J]. Electrochimecal Acta, 2017, 246: 1088–1096.

    Article  Google Scholar 

  4. LONG Zhao-hui, DING Jing, DENG Bo-hua, GONG Jin, LI Xiao-bo, YIN Fu-cheng. First-principle study of Li-insertion properties of NiSi2 as anode materials for lithium-ion batteries [J]. Journal of Central South University, 2018, 49(2): 323–329.

    Google Scholar 

  5. ZHOU Hong-ming, GENG Wen-jun, LI Jian. LiPF6 and lithium difluoro (oxalate) borate/ethylene carbonate+ dimethyl carbonate+ethyl (methyl) carbonate electrolyte for LiNio.5Mn1.5O4 cathode [J]. Journal of Central South University, 2017, 24: 1013–1018.

    Article  Google Scholar 

  6. LI N, LIAO S, SUN Y, SONG H W, WANG C X. Uniformly dispersed self-assembled growth of Sb203/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability [J]. Journal of Materials Chemistry A, 2015, 3(11): 5820–5828.

    Article  Google Scholar 

  7. NAM D G, HONG K S, LIM S J, KIM M J, KWON H S. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries [J]. Small, 2015, 11(24): 2885–2892.

    Article  Google Scholar 

  8. WU Feng-dan, WANG Yong, TANG Jun-jun. Microwave-assisted synthesis of antimony oxide nanostructures and their electrochemical properties [J]. Materials Science Forum, 2010, 650: 157–162.

    Article  Google Scholar 

  9. ZHOU Jing, ZHENG Cai-hong, WANG Hua, YANG Jie, HU Peng-fei, GUO Lin. 3D nest-shaped Sb/Sb2O3/RGO composite based high-performance lithium-ion batteries [J]. Nanoscale, 2016, 8(39): 17131–17135.

    Article  Google Scholar 

  10. ZHOU Xiao-si, LIU Xia, XU Yan, LIU Yun-xia, DAI Zhi-hui, BAO Jian-chun. An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries [J]. Journal of Physical Chemistry C, 2014, 118(41): 23527–23534.

    Article  Google Scholar 

  11. XUE Ming-zhe, FU Zheng-wen. Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide [J]. Electrochemical Communications, 2006, 8(8): 1250–1256.

    Article  Google Scholar 

  12. SIMONIN L, LAFONT U, TABRIZI N, SCHMIDT-OTT A, KELDER E-M. Sb/O nano-composites produced via spark discharge generation for Li-ion battery anodes [J]. Journal Power Sources, 2007, 174(2): 805–809.

    Article  Google Scholar 

  13. ZHOU Xiao-zhong, ZHANG Zheng-feng, XU Xiao-hu, YAN Jian, MA Guo-fu, LEI Zi-qiang. Anchoring Sb6O13 nanocrystals on graphene sheets for enhanced lithium storage [J]. ACS Applied Materials Interfaces, 2016, 8(51): 35398–35406.

    Article  Google Scholar 

  14. HE Meng, KRAVCHYK K, WALTER M, KOVALENKO M V. Antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk [J]. Nano Letters, 2014, 14(3): 1255–1262.

    Article  Google Scholar 

  15. HU Xing-yun, KONG Ling-hao, HE Meng-chang. Kinetics and mechanism of photopromoted oxidative dissolution of antimony trioxide [J]. Environment Science Technology, 2014, 48(24): 14266–14272.

    Article  Google Scholar 

  16. BRYNGELSSON H, ESKHULT J, NYHOLM L, HERRANEN M, ALM O, EDSTRÖM K. Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries [J]. Chemistry of Materials, 2007, 19(5): 1170–1180.

    Article  Google Scholar 

  17. DENG Zheng-tao, CHEN Dong, TANG Fang-qiong, MENG Xian-wei, REN Jun, ZHANG Lin. Orientated attachment assisted self-assembly of Sb/Sb2O3 nanorods and nanowires: End-to-end versus side-by-side [J]. Journal of Physical Chemistry C, 2007, 111(14): 5325–5330.

    Article  Google Scholar 

  18. WANG Gui-zhi, FENG Jian-min, DONG Lei, LI Xi-fei, LI De-jun. Antimony (IV) oxide nanorods/reduced graphene oxide as the anode material of sodium-ion batteries with excellent electrochemical performance [J]. Electrochimistry Acta, 2017, 240: 203–214.

    Article  Google Scholar 

  19. LI Bin-jie, XU Xiang-min, ZHAO Yan-bao, ZHANG Zhi-jun. Fabrication of Sb/Sb2O3 nanobelt bundles via a facile ultrasound-assisted room temperature liquid phase chemical route and evaluation of their optical properties [J]. Materials Research Bulletin, 2013, 48(3): 1281–1287.

    Article  Google Scholar 

  20. LI Wei, WANG Kang-li, CHENG Shi-jie, JIANG Kai. A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode [J]. Journal of Materials Chemistry A, 2017, 5(3): 1160–1167.

    Article  Google Scholar 

  21. DENG Ming-xiang, LI Si-jie, HONG Wan-wan, JIANG Yun-ling, XU Wei, SHUAI Hong-lei, ZOU Guo-qiang, HU Yun-chu, HOU Hong-shuai, WANG Wen-lei, JI Xiao-bo. Octahedral Sb/Sb2O3 as high-performance anode for lithium and sodium storage [J]. Materials Chemistry and Physics, 2019, 223: 46–52

    Article  Google Scholar 

  22. KIBSGAARD J, CHEN Zhe-bo, REINECKE B N, JARAMILLO T F. Engineering the surface structure of M0S2 to preferentially expose active edge sites for electrocatalysis [J]. Nature Materials, 2012, 11(11): 963–969.

    Article  Google Scholar 

  23. WU Ren-bing, QIAN Xu-kun, YU Feng, LIU Hai, ZHOU Kun, WEI Jun, HUANG Yi-zhong. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials [J]. Journal of Materials Chemistry A, 2013, 1: 11126–11129.

    Article  Google Scholar 

  24. SO MONICA C, WIEDERRECHT G P, MONDLOCH J E, HUPP J T, FARHA O K. Metal-organic framework materials for light-harvesting and energy transfer [J]. Chemical Communications, 2015, 51(17): 3501–3510.

    Article  Google Scholar 

  25. TAN Yu-ming, CHEN Li-juan, CHEN Han, HOU Qing-lin, CHEN Xian-hong. Synthesis of a symmetric bundle-shaped Sb/Sb2O3 and its application for anode materials in lithium ion batteries [J]. Materials Letters, 2018, 212: 103–106.

    Article  Google Scholar 

  26. WANG Lu, HAN Yu-zhen, FENG Xiao, ZHOU Jun-wen, QI Peng-fei, WANG Bo. Metal-organic frameworks for energy storage: Batteries and supercapacitors [J]. Coordination Chemistry Reviews, 2016, 307: 361–381.

    Article  Google Scholar 

  27. HE Han-na, HUANG Dan, TANG You-gen, WANG Qi, JI Xiao-bo, WANG Hai-yan, GUO Zai-ping. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage [J]. Nano Energy, 2019, 57: 728–736.

    Article  Google Scholar 

  28. DONG Shi-hua, LI Cai-xia, GE Xiao-li, LI Zhao-qiang, MIAO Xian-guang, YIN Long-wei. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries [J]. ACS Nano, 2017, 11(6): 6474–6482.

    Article  Google Scholar 

  29. ZHU Zhi-qiang, WANG Shi-wen, DU Jing, JIN Qi, ZHANG Tian-ran, CHENG Fang-yi, CHEN Jun. Ultrasmail Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries [J]. Nano Letters, 2013, 14(1): 153–157.

    Article  Google Scholar 

  30. ZHANG Lei, WU Hao-bin, MADHAVI S, HNG H H, LOU Xiong-wen (David). Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties [J]. Journal of the American Chemical Society, 2012, 134: 17388–17391.

    Article  Google Scholar 

  31. KANG Wen-pei, TANG Yong-bing, LI Wen-yue, YANG Xia, XUE Hong-tao, YANG Qing-dan, LEE Chun-sing. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode [J]. Nanoscale, 2015, 7(1): 225–231.

    Article  Google Scholar 

  32. LIU Hai-yan, ZHANG Wei, SONG Huai-he, CHEN Xiao-hong, ZHOU Ji-sheng, MA Zhao-kun. Tremella-like graphene/polyaniline spherical electrode material for supercapacitors [J]. Electrochimistry Acta, 2014, 146: 511–517.

    Article  Google Scholar 

  33. WANG Qian, YAN Jun, WANG Yan-bo, WEI Tong, ZHANG Mi-lin, JING Xiao-yan, FAN Zhuang-jun. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors [J]. Carbon, 2014, 67(2): 119–127.

    Article  Google Scholar 

  34. LIU Hui, ZHANG Fan, LI Wen-yue, ZHANG Xiao-long, LEE Chun-sing, WANG Wen-lou, TANG Yong-bing. Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes [J]. Electrochimistry Acta, 2015, 167: 132–138.

    Article  Google Scholar 

  35. ZHANG Rui, LI Hui-yong, SUN Dan, LUAN Jing-yi, HUANG Xiao-bing, TANG You-gen, WANG Hai-yan. Facile preparation of robust porous M0S2/C nanosheet networks as anode material for sodium ion batteries [J]. Journal of Materials Science, 2019, 54(3): 2472–2482.

    Article  Google Scholar 

  36. ZENG H C. Vapour phase growth of orthorhombic molybdenum trioxide crystals at normal pressure of purified air [J]. Journal of Crystal Growth, 1998, 186: 393–402.

    Article  Google Scholar 

  37. ZHANG Zao-li, GUO Lin, WANG Wen-dong. Synthesis and characterization of antimony oxide nanoparticles [J]. Journal of Materials Research, 2001, 16(3): 803–805.

    Article  Google Scholar 

  38. WU Ren-bing, QIAN Xu-kun, RUI Xian-hong, LIU Hai, YADIAN Bo-luo, ZHOU Kun, WEI Jun, YAN Qing-yu, FENG Xi-qiao, LONG Yi, WANG Liu-ying, HUANG Yi-zhong. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability [J]. Small, 2014, 10(10): 1932–1938.

    Article  Google Scholar 

  39. PHAN A, DOONAN C J, URIBE-ROMO F J, KNOBLER C B, O'KEEFFE M, YAGHI O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks [J]. Accounts of Chemical Research, 2010, 43(1): 58–67.

    Article  Google Scholar 

  40. HU Ling-ling, QU Bai-hua, CHEN Li-bao, LI Qiu-hong. Low-temperature preparation of ultrathin nanoflakes assembled tremella-like NiO hierarchical nanostructures for high-performance lithium-ion batteries [J]. Materials Letters, 2013, 108:92–95.

    Article  Google Scholar 

  41. YI Zheng, HAN Qi-gang, LI Xiang, WU Yao-ming, CHENG Yong, WANG Li-min. Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries [J]. Chemical Engineering Journal, 2017, 315: 101–107.

    Article  Google Scholar 

  42. ZHOU Xiao-zhong, ZHANG Zheng-feng, LU Xiao-fang, LV Xue-yan, MA Guo-fu, WANG Qing-tao, LEI Zi-qiang. Sb2O3 nanoparticles anchored on graphene sheets via alcohol dissolution-reprecipitation method for excellent lithium storage properties [J]. ACS Applied Materials Interfaces, 2017,9:34927–34936.

    Article  Google Scholar 

  43. SUN Qian, REN Qin-qi, LI Hong, FU Zheng-wen. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery [J]. Electrochemistry Communications, 2011, 13(12): 1462–1464.

    Article  Google Scholar 

  44. LV Hai-long, QIU Song, LU Gui-xia, FU Ya, LI Xiao-yu, HU Chen-xi, LIU Jiu-rong. Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery [J]. ElectrochimistryActa, 2015, 151: 214–221.

    Article  Google Scholar 

  45. ZHOU Xiao-zhong, ZHANG Zheng-feng, WANG Jian-wen, WANG Qing-tao, MA Guo-fu, LEI Zi-qiang. Sb2O4/reduced graphene oxide composite as high-performance anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2017, 699: 611–618.

    Article  Google Scholar 

  46. HU Ling-yun, ZHU Xiao-shu, DU Yi-chen, LI Ya-fei, ZHOU Xiao-si, BAO Jian-chun. A chemically coupled antimony/ multilayer graphene hybrid as a high-performance anode for sodium-ion batteries [J]. Chemistry of Materials, 2015, 27(23): 8138–8145.

    Article  Google Scholar 

  47. HOU Hong-shuai, JING Ming-jun, YANG Ying-chang, ZHU Yi-rong, FANG Lai-bing, SONG Wei-xin, PAN Cheng-chi, YANG Xu-ming, JI Xiao-bo. Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries [J]. ACS Applied Materials Interfaces, 2014, 6(18): 16189–16196.

    Article  Google Scholar 

  48. ZHANG Yan-dong, XIE Jian, ZHU Tie-jun, CAO Gao-shao, ZHAO Xin-bing, ZHANG Shi-chao. Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route [J]. Journal of Power Sources, 2014, 247(3): 204–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-hong Chen  (陈宪宏).

Additional information

Foundation item: Project(51674114) supported by the National Natural Science Foundation of China; Project(2019JJ40069) supported by the Natural Science Foundation of Hunan Province, China; Project(16K025) supported by the Key Laboratory of the Education Department of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Ym., Chen, Xh., Zhu, Yr. et al. Synthesis of spherical tremella-like Sb2O3 structures derived from metal-organic framworks and its lithium storage properties. J. Cent. South Univ. 26, 1469–1480 (2019). https://doi.org/10.1007/s11771-019-4103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4103-x

Key words

摘要

Navigation