Skip to main content
Log in

SOC estimation based on data driven exteaded Kalman filter algorithm for power battery of electric vehicle and plug-in electric vehicle

基于数据驱动EKF 算法的电动汽车及插电式混合动力汽车动力电池SOC 估计

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

State of charge (SOC) estimation has always been a hot topic in the field of both power battery and new energy vehicle (electric vehicle (EV), plug-in electric vehicle (PHEV) and so on). In this work, aiming at the contradiction problem between the exact requirements of EKF (extended Kalman filter) algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period, a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed. The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery. Through the combination of data-based and model-based SOC estimation method, the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods, and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment (such as in an EV or PHEV). A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.

摘要

电池荷电状态(SOC)估计一直是动力电池和新能源汽车(含电动汽车(EV)、插电式电动汽车 (PDEV)等)领域的研究热点。本文针对传统EKF(扩展卡尔曼滤波)算法对于动力电池模型精确性要求 与全生命周期内的动态性要求之间的矛盾问题,提出了一种基于数据驱动EKF 算法的SOC 估计方法。 该方法的创新之处在于:数据驱动的EKF 动力电池SOC 估计可以在动力电池内部参数未知的情况下, 利用可观测的端电压和电流数据,实现动力电池SOC 的在线准确估计。通过将基于数据的SOC 估算 方法与基于模型的SOC 估计算法有效结合,有效避免了传统基于数据的SOC 估计算法的累积误差问 题以及基于模型的SOC 估计算法对于电池模型精度的依赖性,使其更加适用于环境复杂多变 (例如 EV 和PHEV)的动力电池全生命周期SOC 估算。实验结果表明,本文所提出的基于数据驱动的EKF 动力电池SOC 估计算法具有更好的鲁棒性和实用性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BABA A, ADACHI S. Soc estimation of HEV/Ev battery using series Kalman filter [J]. Electrical Engineering in Japan, 2014, 187(2): 53–62. DOI: 10.1002/ eej.22511.

    Article  Google Scholar 

  2. HU ZHI-KUN, LIU BIN, LIN YONG. Adaptive square root unscented Kalman filter for SOC estimation of battery [J]. Electric Machines and Control, 2014, 18(4): 111–116. DOI: 10.3390/en10091345.

    Google Scholar 

  3. RIVERA-BARRERA, MUÑOZ-GALEANO N, SARMIENTO- MALDONADO H. Soc estimation for lithium-ion batteries: Review and future challenges [J]. Electronics, 2017, 6(4): 102. DOI: 10.3390/electronics6040102.

    Article  Google Scholar 

  4. XU Jun, LIU Bing-he, WANG XIN-YI. Computational model of 18650 lithium-ion battery with coupled strain rate and Soc dependencies [J]. Applied Energy, 2016, 172: 180–189. DOI: 10.1016/j.apenergy.2016.03.108.

    Article  Google Scholar 

  5. CHENG K W E, DIVAKAR B P, WU HONG-JIE, DING KAI. Battery-management system (BMS) and Soc development for electrical vehicles [J]. IEEE Transactions on Vehicular Technology, 2011, 60(1): 76–88. DOI: 10.1109/ TVT.2010.2089647.

    Article  Google Scholar 

  6. PANDAY A, BANSAL H O, SRINIVASAN P. Thermoelectric modeling and online Soc estimation of Li-ion battery for plug-in hybrid electric vehicles [J]. Modelling and Simulation in Engineering, 2016, 2016: 1–12. DOI: 10.1155/2016/2353521.

    Article  Google Scholar 

  7. WANG Chuan-Xin. Soc estimation algorithm for Li-ion battery in electric or hybrid vehicles [J]. International Journal of Electric and Hybrid Vehicles, 2016, 8(1): 61–77. DOI: 10.1504/IJEHV.2016.076962.

    Article  Google Scholar 

  8. PASCHERO M, STORTI G L, RIZZI A. A novel mechanical analogy-based battery model for SoC estimation using a multicell Ekf [J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1695–1702. DOI: 10.1109/TSTE.2016.2574755.

    Article  Google Scholar 

  9. ZHONG Fu-li, LI Hui, ZHONG Shou-ming, ZHONG Qi-shui, CHUN Yin. An SOC estimation approach based on adaptive sliding mode observer and fractional order equivalent circuit model for lithium-ion batteries [J]. Communications in Nonlinear Science and Numerical, 2015, 24(1-3): 127–144. DOI: 10.1016/j.cnsns.2014.12.015.

    Article  MathSciNet  Google Scholar 

  10. MIAO Zhi-xin, XU Ling, DISFANI V R, FAN Ling-ling. An SOC-based battery management system for microgrids [J]. IEEE Transactions on Smart Grid, 2014, 5(2): 966–973. DOI: 10.1109/TSG.2013.2279638.

    Article  Google Scholar 

  11. TABORELLI C, ONORI S, MAES S, SVEUM P, AL- HALLAJ S, AL- KHAYAT N. Advanced battery management system design for SOC/Soh estimation for e-bikes applications [J]. International Journal of Powertrains, 2016, 5(4): 325–57. DOI: 10.1504/IJPT.2016.081795.

    Article  Google Scholar 

  12. ARUN K S, HUANG T S, BLOSTEIN S D. Least-squares fitting of two 3-D point sets [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1987 (5): 698–700. DOI: /10.1109/TPAMI.1987.4767965.

    Google Scholar 

  13. GILLARD J. Circular and linear regression: Fitting circles and lines by least squares [J]. Journal of the Royal Statistical Society Series A-Statistics in Society, 2011, 174(3): 843–943. DOI: 10.1111/j.1467-985X.2011.00709_4.x.

    Article  Google Scholar 

  14. LI Ge-chen, GU Yan-lei. SOC of lithium-ion rechargeable battery predicted by electrochemical impedance spectroscopy [J]. Chinese Journal of Power Sources, 2008, 32(9): 599–602. (in Chinese)

    Google Scholar 

  15. CHARKHGARD M, FARROKHI M. State-of-charge estimation for lithiumion batteries using neural networks and Ekf [J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 4178–4187. DOI: 10.1109/TIE.2010.2043035.

    Article  Google Scholar 

  16. GAUVAIN J L, LEE C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov Chains [J]. IEEE Transactions on Speech and Audio Processing, 1994, 2(1): 291–298. DOI: 10.1109/89.279278.

    Article  Google Scholar 

  17. KRONE T, ALBERS C J, TIMMERMAN M E. A comparative simulation study of Ar (1) estimators in short time series [J]. Quality & Quantity, 2017, 51(1): 1–21. DOI: 10.1007/s11135-015-0290-1.

    Article  Google Scholar 

  18. CHEN Jin-guang, MA Li-li. Error performance analysis of kalman filtering algorithm for non-Gaussian system [J]. Electronics Optics & Control, 2010, 17(9): 30–33. (in Chinese)

    Google Scholar 

  19. TEWFIK L. Optimal tests in Ar (m) time series model [J]. Communications in Statistics-Simulation and Computation, 2017, 46(2): 1583–1610. DOI: 10.1080/03610918.2015.1009999.

    Article  MathSciNet  MATH  Google Scholar 

  20. SU Wei-xing, ZHU Yun-long, LIU Fang, HU Kun-yuan. On-line outlier and change point detection for time series [J]. Journal of Central South University, 2013, 20(1):114–122.DOI: 10.1007/s11771-013-1466-2.

    Article  Google Scholar 

  21. HE Hong-wen, QIN Hong-zhou, SUN Xiao-kun, SHUI Yuan-peng. Comparison study on the battery SoC estimation with Ekf and Ukf algorithms [J]. Energies, 2013, 6(10): 5088–5100. DOI: 10.3390/en6105088.

    Article  Google Scholar 

  22. CUI Xian-qiang. Study on extension and application of adaptive robust foltering theory for controlling influence of colored noise in Kinematic Positioning [D]. Chang’an University, 2012. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-xing Su  (苏卫星).

Additional information

Foundation item: Projects(51607122, 51378350) supported by the National Natural Science Foundation of China; Project(BGRIMM-KZSKL-2018-02) supported by the State Key Laboratory of Process Automation in Mining & Metallurgy/Beijing Key Laboratory of Process Automation in Mining & Metallurgy Research, China; Project(18JCTPJC63000) supported by Tianjin Enterprise Science and Technology Commissioner Project, China; Projects(2017KJ094, 2017KJ093) supported by Tianjin Education Commission Scientific Research Plan Project, China; Project(17ZLZXZF00280) supported by Tianjin Science and Technology Project, China; Project(18JCQNJC77200) supported by Tianjin Province Science and Technology projects, China; Projects(2017YFB1103003, 2016YFB1100501) supported by National Key Research and Development Plan, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Ma, J., Su, Wx. et al. SOC estimation based on data driven exteaded Kalman filter algorithm for power battery of electric vehicle and plug-in electric vehicle. J. Cent. South Univ. 26, 1402–1415 (2019). https://doi.org/10.1007/s11771-019-4096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4096-5

Key words

关键词

Navigation