Skip to main content
Log in

Fluid characteristic of multiphase fluid in annular space between pump barrel and plunger

抽油泵柱塞与泵筒环形空间内的多相流体特性

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The pump performance parameters, such as pump pressure, plunger friction and pump valve resistance, are fundamental parameters of optimal design of pump efficiency and sucker rod pumping system (SRPS). In this paper, considering the characteristic of geometrical nonlinear and rheology property of multiphase fluid, the pump performance parameters are studied. Firstly, a dynamics model of annular fluid flow is built. In the detail, a partial differential equation of annular fluid is established and a computing model of fluid pressure gradient is built. Secondly, the simulation models of plunger friction and hydraulic resistance of pump valve are built. Finally, a novel simulation method of fluid pressure in annular space is proposed with software ANSYS. In order to check up the correction of models proposed in this paper, the comparison curves of experiment and simulation results are given. Based on above model, the whole simulation model of plunger pump is simulated with Visual Basic 6.0. The results show that the fluid friction of pump plunger and instantaneous resistance of pump valve are nonlinear. The impact factors of pump performance parameters are analyzed, and their characteristic curves are given, which can help to optimize the pump motion parameters and pump structural.

摘要

进行抽油泵性能参数分析是泵效和有杆抽油系统优化设计的基础。为此, 本文考虑抽油泵结构 几何非线性和多相流体的流变特性, 进行了抽油泵性能参数的仿真研究。首先, 进行了环空流体动力 学分析, 建立了描述环空流体流动规律的动力学模型和流体压力梯度的计算模型。其次, 对柱塞摩擦 力和泵阀隙水力损失进行了分析, 建立了柱塞摩擦力和泵阀隙水力损失的仿真模型。最后, 基于有限 元分析软件, 提出了环空流体压力的仿真方法。基于实验和仿真数据, 进行了仿真模型精度的对比验 证。应用 VB 6.0 软件, 编制了整体系统的数值仿真算法, 并进行了动态参数仿真。仿真结果表明: 柱塞摩擦力和泵阀隙水力损失的变化规律具有显著的非线性特征。与此同时, 进行了抽油泵性能参数 影响因素分析并给出了相应特性曲线。研究结果对抽油泵性能参数优化和抽油泵整体结构的合理设计 具有要的实际意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XING M M, DONG S M, TONG Z X, TIAN R F, CHEN H L. Dynamic simulation and efficiency analysis of beam pumping system [J]. Journal of Central South University, 2015, 22(9): 3367–3379. DOI: https://doi.org/10.1007/s11771-015-2877-z.

    Article  Google Scholar 

  2. LUAN G H, HE S L, YANG Z, ZHAO H Y, HU J H. A Prediction model for a new deep-rod pumping system [J]. Journal of Petroleum Science & Engineering, 2011, 80(1): 75–80. DOI:https://doi.org/10.1016/j.petrol.2011.10.011.

    Article  Google Scholar 

  3. XING M M, DONG S M. A new simulation model for a beam-pumping system applied in energy saving and resource-consumption reduction [J]. SPE Production & Operations, 2015, 30(2): 130–140. DOI:https://doi.org/10.2118/173190-PA.

    Article  MathSciNet  Google Scholar 

  4. TAKACS G. Ways to obtain optimum power efficiency of artificial lift installations [C]// SPE Oil and Gas India Conference and Exhibition. Mumbai, India, 2010: SPE-126544. DOI: https://doi.org/10.2118/126544-MS.

    Google Scholar 

  5. CUI Z H, YU G A, AN J G. Sucker rod pumping equipment and technology-sucker rod pumping system [M]. Beijing: Petroleum Industry Press, 1994: 20–71. (in Chinese)

    Google Scholar 

  6. MOREIRA A P, LEPIKSON H A, SCHNITMAN L, RAMALHO G L, MATOS F. Characterization of the driving unit of linear submerged double acting pumping system [C]// SPE Artificial Lift Conference—Latin America and Caribbean. Salvador, Bahia, Brazil, 2015: SPE-173922-MS. DOI: https://doi.org/10.2118/173922-MS.

    Google Scholar 

  7. ZHANG H, LI Y, WANG H, LI X, ZHANG Z, HUANG B, HAN Q. Development of the forced pull rod type hollow gas prevention pump for CO2 flooding [J]. China Petroleum Machinery, 2017, 45(1): 95–97. DOI:https://doi.org/10.16082/j.cnki.issn.1001-4578.2017.01.020. (in Chinese)

    Google Scholar 

  8. YANG Z, LIU W, LIU Y G, CHEN H Q, ZHANG P P. Anti-leakage of hydraulic feedback heavy-oil pump [J]. Special Oil and Gas Reservoirs, 2016, 23(4): 147–150. DOI: https://doi.org/10.3969/j.issn.1006-6535.2016.04.035. (in Chinese)

    Google Scholar 

  9. SHEN D C, ZHANG G T, AI W C. Sucker rod pumping equipment and technology-pump [M]. Beijing: Petroleum Industry Press, 1994: 123–205. (in Chinese)

    Google Scholar 

  10. de AZEVEDO V W F, de LIMA J A, PALADINO E E. A 3D transient model for the multiphase flow in a progressing-cavity pump [J]. SPE Journal, 2016, 21(04): 1458–1469. DOI: https://doi.org/10.2118/178924-PA.

    Article  Google Scholar 

  11. ZHOU L, BAI L, LI W, SHI W D, WANG C. PIV validation of different turbulence models used for numerical simulation of a centrifugal pump diffuser [J]. Engineering Computations, 2018, 35(1): 2–17. DOI: https://doi.org/10.1108/EC-07-2016-0251.

    Article  Google Scholar 

  12. ORKISZEWSKI J. Predicting two-phase pressure drops in vertical pipe [J]. JPT, 1967, 19(6): 829–838. DOI: https://doi.org/10.2118/1546-PA.

    Article  Google Scholar 

  13. BEGGS D H, BRILL J P. A study of two-phase flow in inclined pipes [J]. JPT, 1973, 25(5): 607–617. DOI: https://doi.org/10.2118/4007-PA.

    Article  Google Scholar 

  14. HASAN A, KABIR C. A study of multiphase flow behavior in vertical wells [J]. SPE Production Engineering, 1988, 3(2): 263–272. DOI: https://doi.org/10.2118/15138-PA.

    Article  Google Scholar 

  15. DONG S. Computer simulation of dynamic parameters of rod pumping system optimization [M]. Beijing: Petroleum Industry Press, 2003: 52–64. DOI: https://doi.org/103969/j.issn.1007-791X.2011.04.003. (in Chinese)

    Google Scholar 

  16. DONG S, XING M, ZHANG H, CHAI G. Study of reasonable flowing pressure of rod pumping wells based on maximum system efficiency [J]. Journal of Yanshan University, 2011, 35(4): 296–308. (in Chinese)

    Google Scholar 

  17. PALKA K, CZYZ J. Optimizing downhole fluid production of sucker-rod pumps with variable motor speed [J]. SPE Production & Operations, 2009, 24(2): 346–352. DOI: https://doi.org/10.2118/113186-PA.

    Article  Google Scholar 

  18. HAN H S, QU C L, WANG Q W, AN M F, LI H. The indoor experiments on the oil-well pump effciency at different inclined angles [J]. Science Technology & Engineering, 2010, 10(36): 9073–9076. DOI: https://doi.org/10.3969/j.issn.1671-1815.2010.36.030. (in Chinese)

    Google Scholar 

  19. WANG Y, WANG S, YANG L, PU H, LING K. A new model to evaluate polished rod load of sucker rod pumping system [C]// SPE Liquids-Rich Basins Conference - North America, 5–6, 2018, SPE-191803-MS. DOI: https://doi.org/10.2118/191803-MS.

    Google Scholar 

  20. TANG Y, LIU Z, LIU P, KANG W. A novel ice slurry producing system with vacuum freezing [J]. Journal of Central South University, 2017, 24(3): 736–742. DOI: https://doi.org/10.1007/s11771-017-3475-z.

    Article  Google Scholar 

  21. BAKHTIZIN R N, URAZAKOV K R, LATYPOV B M, ISHMUKHAMETOV B H, NARBUTOVSKIKH A. The influence of regular microrelief forms on fluid leakage through plunger pair of sucker rod pump (Russian) [J]. Oil Industry Journal, 2017, 4: 113–116. DOI: https://doi.org/10.24887/0028-2448-2017-4-113-116.

    Google Scholar 

  22. HULSURKAR P, AWOLEKE O, AHMADI M. Experimental study of the multiphase flow of sand, viscous oil, and gas in a horizontal pipe [J]. SPE Production & Operations, 2018, 33(4): 837–856. DOI: https://doi.org/10.2118/187212-MS.

    Article  Google Scholar 

  23. WU B, WANG X L, LIU H, XU H L. Numerical simulation and analysis of solid-liquid two-phase three-dimensional unsteady flow in centrifugal slurry pump [J]. Journal of Central South University, 2015, 22(8): 3008–3016. DOI: https://doi.org/10.1007/s11771-015-2837-7.

    Article  Google Scholar 

  24. TAN C, WANG N, DONG F. Oil-water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent [J]. Journal of Central South University, 2016, 23(1): 240–248. DOI: https://doi.org/10.1007/s11771-016-3067-3.

    Article  Google Scholar 

  25. HUANG S, SUN A, ZHOU T, ZHOU J. Application of time-frequency entropy from wake oscillation to gas-liquid flow pattern identification [J]. Journal of Central South University, 2018, 25(7): 1690–1700. DOI: https://doi.org/10.1007/s11771-018-3860-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-ming Xing  (邢明明).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Mm., Zhou, Ll., Zhao, Y. et al. Fluid characteristic of multiphase fluid in annular space between pump barrel and plunger. J. Cent. South Univ. 26, 1327–1341 (2019). https://doi.org/10.1007/s11771-019-4090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4090-y

Key words

关键词

Navigation