Skip to main content
Log in

A nanofluid MHD flow with heat and mass transfers over a sheet by nonlinear boundary conditions: Heat and mass transfers enhancement

纳米磁流体在薄片上流动的非线性边界条件: 传热和传质的强化

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet. The boundary conditions considered were a nonlinear magnetic field, a nonlinear velocity and convection. Such nonlinearity in hydrodynamic and heat transfer boundary conditions and also in the magnetic field has not been addressed with the great details in the literature. In this investigation, both the Brownian motion and thermophoretic diffusion have been considered. A similarity solution is achieved and the resulting ordinary differential equations (nonlinear) are worked numerically out. Upon validation, the following hydrodynamic and heat and mass transfers parameters were found: the reduced Sherwood and Nusselt numbers, the reduced skin friction coefficient, and the temperature and nanoparticle volume fraction profiles. All these parameters are found affected by the Lewis, Biot and Prandtl numbers, the stretching, thermophoretic diffusion, Brownian motion and magnetic parameters. The detailed trends observed in this paper are carefully analyzed to provide useful design suggestions.

摘要

对黏性不可压缩的纳米流体在水平薄板上的稳定边界层及传热传质进行了数值研究。研究过程 中, 建立了非线性磁场、非线性速度和对流的非线性边界条件。然而, 在水动力和热边界条件及磁场 中的非线性问题尚未见研究报道。本研究中, 同时考虑了布朗运动和热泳扩散, 获得了一种相似的解 决方案并求解了该常微分方程(非线性)。通过验证找到了影响流体动力学、传热和传质的参数: 减少 舍伍德和努塞尔数, 可降低表面摩擦系数, 以及温度和纳米颗粒体积分数的分布。所有这些参数都受 到 Lewis 数、Biot 数和Prandtl 数, 以及拉伸、热泳扩散、布朗运动和磁场参数的影响。详细分析了所 观察到的现象, 并提出了有用的建议。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FANG, T. Further study on a moving-wall boundary-layer problem with mass transfer [J]. Acta Mechanica, 2003, 163: 183–188. DOI: https://doi.org/10.1007/s00707-002-0979-9.

    Article  MATH  Google Scholar 

  2. CORTELL, R. A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet [J]. International Journal of Nonlinear Mechanics, 2006, 41: 78–85. DOI: https://doi.org/10.1016/j.ijnonlinmec.2005.04.008.

    Article  MATH  Google Scholar 

  3. MALEKIAN S, FATHI E, MALEKIAN N, MOGHADASI H, MOGHIMI, M. Analytical and numerical investigations of unsteady graphene oxide nanofluid flow between two parallel plates [J]. International Journal of Thermophysics, 2018, 39: 100–118. DOI: https://doi.org/10.1007/s10765-018-2422-z.

    Article  Google Scholar 

  4. AHMADI A A, KHODABANDEH E, MOGHADASI H, MALEKIAN N, AKBARI O A, BAHIRAEI, M. Numerical study of flow and heat transfer of water-Al2O3 nanofluid inside a channel with an inner cylinder using Eulerian-Lagrangian approach [J]. Journal of Thermal Analysis and Calorimetry, 2018, 132: 651–665. DOI: https://doi.org/10.1007/s10973-017-6798-y.

    Article  Google Scholar 

  5. CORTELL, R. Viscous flow and heat transfer over a nonlinearly stretching sheet [J]. Applied Mathematics and Computation, 2007, 184: 864–873. DOI: https://doi.org/10.1016/j.amc.2006.06.077.

    Article  MathSciNet  MATH  Google Scholar 

  6. SAJID M, HAYAT, T. Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet [J]. International Communications in Heat and Mass Transfer, 2008, 35: 347–356. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2007.08.006.

    Article  Google Scholar 

  7. TSAI R, HUANG K H, HUANG, J S. Flow and heat transfer over an unsteady stretching surface with non-uniform heat source [J]. International Communications in Heat and Mass Transfer, 2008, 35: 1340–1343. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2008.07.001.

    Article  Google Scholar 

  8. NANDEPPANAVAR M, VAJRAVELU K, SUBHAS ABEL M, NG Chiu-On. Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature [J]. International Journal of Heat and Mass Transfer, 2011, 54: 4960–4965. DOI:https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.009.

    Article  MATH  Google Scholar 

  9. FANG T, ZHANG J, ZHONG, Y. Boundary layer flow over a stretching sheet with variable thickness [J]. Applied Mathematics and Computation, 2012, 218: 7241–7252. DOI: https://doi.org/10.1016/j.amc.2011.12.094.

    Article  MathSciNet  MATH  Google Scholar 

  10. SUBHASHINI S V, SUMATHI R, POP, I. Dual solutions in a thermal diffusive flow over a stretching sheet with variable thickness [J]. International Communications in Heat and Mass Transfer, 2013, 48: 61–66. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.09.007.

    Article  Google Scholar 

  11. YANG Liu, DU Kai, ZHANG Xiao-song. Influence factors on thermal conductivity of ammonia-water nanofluids [J]. Journal of Central South University, 2012, 19: 1622–1628. DOI: https://doi.org/10.1007/s11771-012-1185-0.

    Article  Google Scholar 

  12. WUSIMAN Ku-er-ban-jiang, CHUNG H S, NINE M D J, HANDRY A, EOM Y S, KIM J H, JEONG, H M. Heat transfer characteristics of nanofluid through circular tube [J]. Journal of Central South University, 2013, 20: 142–148. DOI: https://doi.org/10.1007/s11771-013-1469-z.

    Article  Google Scholar 

  13. ZAIB A, BHATTACHARYYA K, SHAFIE, S. Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid [J]. Journal of Central South University, 2015, 22: 4856–4863. DOI: https://doi.org/10.1007/s11771-015-3037-1

    Article  Google Scholar 

  14. HAQUE A K M, KWON S, KIM J, NOH J, HUH S, CHUNG H, JEONG, H. An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes [J]. Journal of Central South University, 2015, 22: 3202–3210. DOI: https://doi.org/10.1007/s11771-015-2857-3.

    Article  Google Scholar 

  15. AZARI, A. Thermal conductivity modeling of water containing metal oxide nanoparticles [J]. Journal of Central South University, 2015, 22: 1141–1145. DOI: https://doi.org/10.1007/s11771-015-2626-3.

    Article  Google Scholar 

  16. SELIMEFENDIGIL F, ÖZTOP, H F. Mixed convection in a two-sided elastic walled and SiO2 nanofluid filled cavity with internal heat generation: Effects of inner rotating cylinder and nanoparticle’s shape [J]. Journal of Molecular Liquids, 2015, 212: 509–516. DOI: https://doi.org/10.1016/j.molliq.2015.09.037.

    Article  Google Scholar 

  17. SIAVASHI M, JAMALI, M. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24: 1850–1865. DOI: https://doi.org/10.1007/s11771-017-3660-0.

    Article  Google Scholar 

  18. SELIMEFENDIGILA F, ÖZTOP H F, CHAMKHA, A J. Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder [J]. International Communications in Heat and Mass Transfer, 2017, 87: 40–51. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2017.06.015.

    Article  Google Scholar 

  19. SELIMEFENDIGIL F, ÖZTOP, H F. Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field [J]. International Journal of Heat and Mass Transfer, 2017, 108: 156–171. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.080.

    Article  Google Scholar 

  20. MAGHSOUDI P, SIAVASHI, M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity [J]. Journal of Thermal Analysis and Calorimetry, 2018. DOI: https://doi.org/10.1007/s10973-018-7335-3.

    Google Scholar 

  21. SIAVASHI M, RASAM H, IZADI, A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink [J]. Journal of Thermal Analysis and Calorimetry, 2019. DOI: https://doi.org/10.1007/s10973-018-7540-0.

    Google Scholar 

  22. BUONGIORNO, J. Convective transport in nanofluids [J]. ASME Journal of Heat Transfer, 2006, 128: 240–250. DOI: https://doi.org/10.1115/1.2150834.

    Article  Google Scholar 

  23. KHAN W A, POP, I. Boundary-layer flow of a nanofluid past a stretching sheet [J]. International Journal of Heat and Mass Transfer, 2010, 53: 2477–2483. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.

    Article  MATH  Google Scholar 

  24. MAKINDE O D, AZIZ, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition [J]. International Journal of Thermal Sciences, 2011, 50: 1326–1332. DOI: https://doi.org/10.1016/j.ijthermalsci.2011.02.019.

    Article  Google Scholar 

  25. RANA P, BHARGAVA, R. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17: 212–226. DOI: https://doi.org/10.1016/j.cnsns.2011.05.009.

    Article  MathSciNet  Google Scholar 

  26. MUSTAFAA M, HAYAT T, OBAIDAT, S. Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2013, 23: 945–959. DOI: https://doi.org/10.1108/HFF-09-2011-0179.

    Article  MathSciNet  MATH  Google Scholar 

  27. RAHMAN M, ROSCA A V, POP, I. Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno’s model [J]. International Journal of Heat and Mass Transfer, 2014, 77: 1133–1143. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.013.

    Article  Google Scholar 

  28. MUKHOPADHYAY S, LAYEK G C, SAMAD Sk. Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity [J]. International Journal of Heat and Mass Transfer, 2005, 48: 4460–4466. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.027.

    Article  MATH  Google Scholar 

  29. ANJALI DEVI S P, THIYAGARAJAN, M. Steady nonlinear hydromagnetic flow and heat transfer over a stretching surface of variable temperature [J]. Heat and Mass Transfer, 2006, 42: 671–677. DOI: https://doi.org/10.1007/s00231-005-0640-y.

    Article  Google Scholar 

  30. ABEL M S, NANDEPPANAVAR, M. Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14: 2120–2131. DOI: https://doi.org/10.1016/j.cnsns.2008.06.004.

    Article  MathSciNet  MATH  Google Scholar 

  31. PRASAD K V, PAL D, UMESH V, RAO N S P. The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 331–344. DOI: https://doi.org/10.1016/j.cnsns.2009.04.003.

    Article  MATH  Google Scholar 

  32. IBRAHIM W, SHANKER, B. Unsteady MHD boundarylayer flow and heat transfer due to stretching sheet in the presence of heat source or sink [J]. Computers and Fluids, 2012, 70: 21–28. DOI: https://doi.org/10.1016/j.compfluid.2012.08.019.

    Article  MathSciNet  MATH  Google Scholar 

  33. CORTELL, R. MHD (magneto-hydrodynamic) flow and radiative nonlinear heat transfer of a viscoelastic fluid over a stretching sheet with heat generation/absorption [J]. Energy, 2014, 74: 896–905. DOI: https://doi.org/10.1016/j.energy.2014.07.069.

    Article  Google Scholar 

  34. GILL, S. A process for the step-by-step integration of differential equations in an automatic digital computing machine [J]. Proceedings of the Cambridge Philosophical Society, 1951, 47(1): 96–108. DOI: https://doi.org/10.1017/S0305004100026414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Farhangmehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhangmehr, V., Moghadasi, H. & Asiaei, S. A nanofluid MHD flow with heat and mass transfers over a sheet by nonlinear boundary conditions: Heat and mass transfers enhancement. J. Cent. South Univ. 26, 1205–1217 (2019). https://doi.org/10.1007/s11771-019-4081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4081-z

Key words

关键词

Navigation