Skip to main content
Log in

MHD mixed convective stagnation-point flow of Eyring-Powell nanofluid over stretching cylinder with thermal slip conditions

Eyring-Powell 磁纳米流体在伸缩圆柱上的热滑移混合对流

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The optimal design of heating and cooling systems must take into account heat radiation which is a non-linear process. In this study, the mixed convection in a radiative magnetohydrodynamic Eyring-Powell copper-water nanofluid over a stretching cylinder was investigated. The energy balance is modeled, taking into account the non-linear thermal radiation and a thermal slip condition. The effects of the embedded flow parameters on the fluid properties, as well as on the skin friction coefficient and heat transfer rate, are analyzed. Unlike in many existing studies, the recent spectral quasi-linearization method is used to solve the coupled nonlinear boundary-value problem. The computational result shows that increasing the nanoparticle volume fraction, thermal radiation parameter and heat generation parameter enhances temperature profile. We found that the velocity slip parameter and the fluid material parameter enhance the skin friction. A comparison of the current numerical results with existing literature for some limiting cases shows excellent agreement.

摘要

供热冷却系统的优化设计必须考虑非线性过程的热辐射。 本文研究了铜-水纳米流体在伸缩圆 筒上的Eyring-Powell 磁热辐射的混合对流动力学。 考虑非线性热辐射和热滑移条件, 建立了能量守 衡模型, 分析了表面摩擦系数和换热速率等流动参数对流体特性的影响。不采用现有的研究方法, 应 用最近的谱准线性化方法求解耦合非线性边界值问题。 计算结果表明, 增大纳米粒子的体积分数、热 辐射参数和热源参数可增强温度分布。 速度滑移参数和流体材料参数增大了表面摩擦力。 对比分析了 极限情况下的数值结果和文献结果, 结果表明: 采用本文研究方法计算结果达到同等精度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOI S U S. Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non-Newtonian flow [J]. ASME FED, 1995, 231: 95–105.

    Google Scholar 

  2. SAIDA Z, SAIDUR R, RAHIMB N A, ALIMA M A. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid [J]. Energy and Buildings, 2014, 97: 1–9.

    Article  Google Scholar 

  3. JAIN S, HIRST D G, O€ULLIVAN J M. Gold nanoparticles as novel agents for cancer therapy [J]. The British Journal of Radiology, 2012, 85: 101–113.

    Article  Google Scholar 

  4. BUONGIORNO J J. Convective transport in nanofluids [J]. ASME, 2005, 128: 240–250.

    Article  Google Scholar 

  5. DAS S, JANA R N. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate [J]. Alexandria Engineering Journal, 2015, 54(1): 55–64.

    Article  Google Scholar 

  6. BACHOK N, ISHAK A, POP I. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid [J]. Nanoscale Research Letters, 2011, 6(1): 623.

    Article  Google Scholar 

  7. RAMZAN M, FAROOQ M, HAYAT T, ALSAEDI A, CAO J. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects [J]. Journal of Central South University, 2015, 22(2): 707–716.

    Article  Google Scholar 

  8. HAYAT T, FAROOQ M, ALSAEDI A. Stagnation point flow of carbon nanotubes over stretching cylinder with slip conditions [J]. Open Physics, 2015, 13(1): 188–197.

    Article  Google Scholar 

  9. ISHAK A, NAXARI R, POP I. Post-stagnation-point boundary layer flow mixed convection heat transfer over a vertical linearly stretching sheet [J]. Archive of Mechanics, 2008, 60(4): 303–322.

    MathSciNet  MATH  Google Scholar 

  10. PAL D, MAL G, VAJRAVALU K. Mixed convection stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with internal heat generation/absorption [J]. Communications in Numerical Analysis, 2015, 2015(1): 30–50.

    Article  MathSciNet  Google Scholar 

  11. ABBAS Z, MASOOD T, OLANREWAJU P O. Dual solutions of MHD stagnation point flow heat transfer over a stretching/shrinking sheet with generalized slip condition [J]. Journal of Central South University, 2015, 22(6): 2376–2384.

    Article  Google Scholar 

  12. MUKHOPADHYAY S. MHD boundary layer slip flow along a stretching cylinder [J]. Ain Shams Engineering Journal, 2013, 4(2): 317–324.

    Article  Google Scholar 

  13. MUKHOPADHYAY S. Effects of thermal radiation variable fluid viscosity on stagnation point flow past a porous stretching sheet [J]. Meccanica, 2013, 48(1): 1717–1730.

    Article  MathSciNet  MATH  Google Scholar 

  14. SARI M R, KEZZAR M, ADJABI R. Heat transfer of copper/water nanofluid flow through converging-diverging channel [J]. Journal of Central South University, 2016, 23(2): 484–496.

    Article  Google Scholar 

  15. MAJID S, MOHAMMAD J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865.

    Article  Google Scholar 

  16. MAHMOODI M, KELOUSI S. Kerosene–alumina nanofluid flow heat transfer for cooling application [J]. Journal of Central South University, 2016, 23(4): 983–990.

    Article  Google Scholar 

  17. WUSIMAN K, CHUNG H, MD J N, HANDRY A, EOM Y, KIM J, JEONG H. Heat transfer characteristics of nanofluid through circular tube [J]. Journal of Central South University, 2013, 20(1):142–148.

    Article  Google Scholar 

  18. POWELL R E, EYRING H. Mechanisms for the relaxation theory of viscosity [J]. Nature, 1944, 154(1): 427–428.

    Article  Google Scholar 

  19. JAVED T, ALI N, ABBAS Z, SAJID M. Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet [J]. Chemical Engineering Communications, 2013, 200(3): 327–336.

    Article  Google Scholar 

  20. HAYAT T, IQBAL Z, QASIM M, OBAIDAT S. Steady flow of an Eyring-Powell fluid over a moving surface with convective boundary conditions [J]. International Journal of Heat Mass Transfer, 2012, 55(7): 1817–1822.

    Article  Google Scholar 

  21. AKBAR N S, EBAID A, KHAN Z H. Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet [J]. Journal of Magnetism Magnetic Materials, 2015, 382: 355–358.

    Article  Google Scholar 

  22. BABU J M, SEEP N, RAJU C S K. Heat and mass transfer in MHD Eyring-Powell nanofluidf flow due to cone in porous medium [J]. International Journal of Engineering Research in Africa, 2015, 19: 57–74.

    Article  Google Scholar 

  23. HAYAT T, KHAN M I, WAQAS M, ALSAEDI A. Effectiveness of magnetic nanoparticles in radiative flow of Eyring-Powell fluid [J]. Journal of Molecular Liquids, 2017, 231: 126–133.

    Article  Google Scholar 

  24. RAMZAN M, BILAL M, KANWAL S, CHUNG J D. Effects of variable thermal conductivity non-linear thermal radiation past an eyring powell nanofluid flow with chemical reaction [J]. Communications in Theoretical Physics, 2017, 67(6): 723–731.

    Article  MathSciNet  Google Scholar 

  25. MALIK M Y, KHAN I, HUSSAIN A, SALAHUDDIN T. Mixed convection flow of MHD Eyring-Powell nanofluid over a stretching sheet: A numerical study [J]. AIP Advances, 2015, 5(11): 117118.

    Article  Google Scholar 

  26. KHAN I, KHAN M, MALIK M Y, SALAHUDDIN T. Mixed convection flow of Eyring-Powell nanofluid over a cone plate with chemical reactive species [J]. Results in Physics, 2017, 7: 3716–3722.

    Article  Google Scholar 

  27. MOTSA S S. A new spectral local linearization method for nonlinear boundary layer flow problems [J]. Journal of Applied Mathematics, 2013. Article ID 423628. DOI: 1155/2013/423628.

    Google Scholar 

  28. ROSSELAND S. Astrophysik und atom-theoretische grundlagen [M]. Springer-Verlag, 1931.

    Book  MATH  Google Scholar 

  29. BELLMAN R E, KALABA R E. Quasilinearization nonlinear boundary-value problems [M]. R Corporation, 1965.

    Google Scholar 

  30. MOTSA S S, DLAMINI P G, KHUMALO M. Spectral relaxation method spectral quasilinearization method for solving unsteady boundary layer flow problems [J]. Advances in Mathematical Physics, 2014, Article ID 341964. DOI: https://doi.org/10.1155/2014/341964.

    Google Scholar 

  31. CANUTO C, HUSSAINI M Y, QUARTERONI A, THOMAS JR A. Spectral methods in fluid dynamics [M]. Springer Science & Business Media, 2012.

    Google Scholar 

  32. TREFETHEN L N. Spectral methods in MATLAB [M]. SIAM, 2000.

    Google Scholar 

  33. MAHAPATRA T R, GUPTA A S. Heat transfer in stragnation-point flow towards a stretching sheet [J]. Heat Mass Transfer, 2002, 38: 517–521.

    Article  Google Scholar 

  34. ZAIMI K, ISHAK A. Stagnation-point flow towards a stretching vertical sheet with slip effects [J]. Mathematics, 2016, 4(2): 27. DOI: https://doi.org/10.3390/math4020027.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmoy Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunseye, H.A., Sibanda, P. & Mondal, H. MHD mixed convective stagnation-point flow of Eyring-Powell nanofluid over stretching cylinder with thermal slip conditions. J. Cent. South Univ. 26, 1172–1183 (2019). https://doi.org/10.1007/s11771-019-4079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4079-6

Key words

关键词

Navigation