Skip to main content
Log in

Effect of variable liquid properties on peristaltic transport of Rabinowitsch liquid in convectively heated complaint porous channel

Rabinowitsch 液的可变性对其在多孔通道中对流加热蠕动的影响

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present paper emphasizes the peristaltic mechanism of Rabinowitsch liquid in a complaint porous channel under the influence of variable liquid properties and convective heat transfer. The effect of inclination on the complaint channel walls has been taken into account. The viscosity of the liquid varies across the thickness of the complaint channel, whereas, thermal conductivity varies concerning temperature. The nonlinear governing equations are solved by using perturbation technique under the long wavelength and small Reynold’s number approximations. The expressions for axial velocity, temperature, the coefficient of heat transfer and streamlines are obtained and analyzed graphically. The above said physiological phenomena are investigated for a specific set of relevant parameters on dilatant, Newtonian and pseudoplastic fluid models. The results presented here shows that the presence of variable viscosity, porous parameter and slip parameter significantly affects the flow quantities of dilatant, Newtonian and pseudoplastic fluid models. The investigation further reveals that an increase in the value of variable viscosity and porous parameters enhances the occurrence of trapping phenomenon. Moreover, the size of trapped bolus can be eliminated with suitably adjusting the angle of inclination parameter.

摘要

考虑液体性质的变化和对流换热的影响, 研究了Rabinowitsch 液在多孔通道中的蠕动机理。由 于倾斜对通道壁的影响, 液体的黏度沿通道厚度发生变化, 而导热系数则随着温度的变化而变化。在 长波长和小雷诺数近似的情况下, 利用摄动法求解非线性控制方程, 得到轴向速度、温度、热传递系 数和流线的表达式并进行了图解分析。运用膨胀、牛顿和假塑性流体模型对上述现象进行了研究。结 果表明, 可变黏度、多孔参数和滑移参数对膨胀、牛顿和假塑性流体模型的流体流量有很大的影响。 研究进一步揭示了由于可变黏度和多孔参数的增加而增强了俘获现象的发生。此外, 可以通过适当调 节倾斜角来调整所俘获的丸剂尺寸。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EL SHEHAWEY E F, HUSSENY S Z A. Effect of porous boundaries on peristaltic transport through a porous medium [J]. Acta Mechanica, 2000, 143: 165–177. DOI: https://doi.org/10.1007/BF01170946.

    Article  MATH  Google Scholar 

  2. NADEEM S, AKRAM S. Peristalticflow of a Maxwell model through porous boundaries in a porous medium [J]. Transport in Porous Media, 2011, 56: 895–909. DOI: https://doi.org/10.1007/s11242-010-9663-z.

    Article  Google Scholar 

  3. TRIPATHI D. Peristaltichemodynamic flow of a couple-stress fluid through a porous medium with slip effect [J]. Transport in Porous Media, 2012, 92: 559–572. DOI: https://doi.org/10.1007/s11242-011-9920-9.

    Article  MathSciNet  Google Scholar 

  4. ALSAEDI A, ALI N, TRIPATHI D, HAYAT T. Peristalticflow of couple stress fluid through uniform porous medium [J]. Applied Mathematics and Mechanics, 2014, 35: 469–480. DOI: https://doi.org/10.1007/s10483-014-1805-8.

    Article  MathSciNet  Google Scholar 

  5. SANKAD G C, NAGATHAN P S. Unsteady MHD peristaltic flow of a couple stress fluid through porous medium with wall and slip effects [J]. Alexandria Engineering Journal, 2016, 55: 2099–2105. DOI: https://doi.org/10.1016/j.aej.2016.06.029.

    Article  Google Scholar 

  6. SHIT G C, RANJIT N K. Role of velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: Application to digestive system [J]. Journal of Molecular Liquid, 2016, 221: 305–315. DOI: https://doi.org/10.1016/j.molliq.2016.06.002.

    Article  Google Scholar 

  7. SIAVASHI M, RASAM H, IZADI A. Similaritysolution of air and nanofluid impingement cooling of a cylindrical porous heat sink [J]. Journal of Thermal Analysis and Calorimetry, 2018, 135(2): 1399–1415. DOI: https://doi.org/10.1007/s10973-018-7540-0.

    Article  Google Scholar 

  8. MANJUNATHA G, RAJASHEKHAR C. Slipeffects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls [J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2018, 47: 201–208.

    Google Scholar 

  9. RAMESH K. Influenceof heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel [J]. Journal of Molecular Liquid, 2016, 219: 256–271. DOI: https://doi.org/10.1016/j.molliq.2016.03.010.

    Article  Google Scholar 

  10. SRINIVAS S, GAYATHRI R, KOTHANDAPANI M. Mixedconvective heat and mass transfer in an asymmetric channel with peristalsis [J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16: 1845–1862. DOI: https://doi.org/10.1016/j.cnsns.2010.08.004.

    Article  MathSciNet  MATH  Google Scholar 

  11. ABBASI F M, HAYAT T, AHMAD B. Peristalticflow in an asymmetric channel with convective boundary conditions and Joule heating [J]. Journal Central South University, 2014, 21: 1411–1416. DOI: https://doi.org/10.1007/s11771-014-2079-0.

    Article  Google Scholar 

  12. HUSSAIN Q, ASGHAR S, HAYAT T, ALSAEDI A. Heattransfer in a porous saturated wavy channel with asymmetric convective boundary conditions [J]. Journal of Central South University, 2015, 22: 392–401. DOI: https://doi.org/10.1007/s11771-015-2534-6.

    Article  Google Scholar 

  13. MEBAREK-OUDINA F, BESSAIH R. Oscillatorymagnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders [J]. Journal of Applied Fluid Mechanics, 2016, 9: 1655–1665.

    Article  Google Scholar 

  14. SIAVASHI M, JAMALI M. Optimalselection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24: 1850–1865. DOI: https://doi.org/10.1007/s11771-017-3593-7.

    Article  Google Scholar 

  15. SIAVASHI M, ROSTAMI A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media [J]. International Journal of Mechanical Sciences, 2017, 133: 689–703. DOI: https://doi.org/10.1016/j.ijmecsci.2017.09.031.

    Article  Google Scholar 

  16. OJJELA O, RAJU A, KAMBHATLA P K. Influence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffery fluid between porous parallel plates [J]. Journal of Molecular Liquid, 2017, 232: 195–206. DOI: https://doi.org/10.1016/j.molliq.2017.02.061.

    Article  Google Scholar 

  17. MEBAREK-OUDINA F. Numericalmodelling of the hydrodynamic stability in vertical annulus with heat source of different lengths [J]. Engineering Science and Technology, an International Journal, 2017, 20: 1324–1333. DOI: https://doi.org/10.1016/j.jestch.2017.08.003.

    Article  Google Scholar 

  18. SIAVASHI M, KARIMI K, XIONG Q, DORANEHGARD M H. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder [J]. Journal of Thermal Analysis and Calorimetry, 2018: 1–21. DOI: https://doi.org/10.1007/s10973-018-7945-9.

    Google Scholar 

  19. WAKIF A, BOULAHIA Z, SEHAQUI R. Asemianalytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions [J]. Results in Physics, 2018, 9: 1438–1454. DOI: https://doi.org/10.1016/j.rinp.2018.01.066.

    Article  Google Scholar 

  20. WAKIF A, BOULAHIA Z, ALI F, EID M R, SEHAQUI R. Numericalanalysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu-water nanofluids [J]. International Journal of Applied and Computational Mathematics, 2018, 4: 81. DOI: https://doi.org/10.1007/s40819-018-0513-y.

    Article  MATH  Google Scholar 

  21. WAKIF A, BOULAHIA Z, MISHRA S R, RASHIDI M M, SEHAQUI R. Influenceof a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model [J]. The European Physical Journal Plus, 2018, 133: 181. DOI: https://doi.org/10.1140/epjp/i2018-12037-7.

    Article  Google Scholar 

  22. VAIDYA H, MANJUNATHA G, RAJASHEKHAR C, PRASAD K V. Role of slip and heat transfer on peristaltic transport of Herschel-Bulkley fluid through an elastic tube [J]. Multidiscipline Modeling in Materials and Structures, 2018, 14: 940–959. DOI: https://doi.org/10.1108/MMMS-11-2017-0144.

    Article  Google Scholar 

  23. MESBAH M, VATANI A, SIAVASHI M, DORANEHGARD M H. Parallel processing of numerical simulation of two-phase flow in fractured reservoirs considering the effect of natural flow barriers using the streamline simulation method [J]. International Journal of Heat and Mass Transfer, 2019, 131: 574–583. DOI:https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.097.

    Article  Google Scholar 

  24. NADEEM S, AKBAR N S. Influence of heat transfer and variable viscosity in vertical porous annulus with peristalsis [J]. Journal of Porous Media, 2011, 14: 849–863. DOI: https://doi.org/10.1615/JPorMedia.v14.i10.20.

    Article  Google Scholar 

  25. KHAN A M, ELLAHI R, USMAN M. Theeffects of variable viscosity on the peristaltic flow of non-Newtonian fluid through porous medium in an inclined channel with slip boundary conditions [J]. Journal of Porous Media, 2013, 16: 59–67. DOI: https://doi.org/10.1016/j.aej.2015.03.030.

    Article  Google Scholar 

  26. SINHA A, SHIT G C, RANJIT N K. Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump [J]. Alexandria Engineering Journal, 2015, 54: 691–704.

    Article  Google Scholar 

  27. VAJRAVELU K, PRASAD K V, CHIU-ON N G, VAIDYA H. MHD squeeze flow and heat transfer of a nanofluid between parallel disks with variable fluid properties and transpiration [J]. International Journal of Mechanical and Materials Engineering, 2019, 12: 9. DOI: https://doi.org/10.1186/s40712-017-0076-4.

    Article  Google Scholar 

  28. PRASAD K V, VAJRAVELU K, VAIDYA H, BASHA N Z, UMESH V. Thermaland species concentration of MHD Casson fluid at a vertical sheet in the presence of variable fluid properties [J]. Ain Shams Engineering Journal, 2018, 9: 1763–1779. DOI: https://doi.org/10.1016/j.asej.2016.08.017.

    Article  Google Scholar 

  29. PRASAD K V, VAIDYA H, VAJRAVELU K. MHD mixed convection heat transfer over a non-linear slender elastic sheet with variable fluid properties [J]. Applied Mathematics and Nonlinear Sciences, 2017, 2: 351–366. DOI: https://doi.org/10.21042/AMNS.2017.2.00029.

    Article  MathSciNet  MATH  Google Scholar 

  30. HAYAT T, FAROOQ S, AHMAD B, ALSAEDI A. Consequencesof variable thermal conductivity and activation energy on peristalsis in curved configuration [J]. Journal of Molecular Liquid, 2018, 263: 258–267. DOI: https://doi.org/10.1016/j.molliq.2018.04.109.

    Article  Google Scholar 

  31. RAJASHEKHAR C, MANJUNATHA G, VAIDYA H, DIVYA B B, PRASAD K V. Peristaltic flow of Casson liquid in an inclined porous tube with convective boundary conditions and variable liquid properties [J]. Frontiers in Heat and Mass Transfer, 2018, 11: 35.

    Google Scholar 

  32. HAYAT T, JAVED M, ALI N. MHD peristaltic of a Jeffery fluid in a channel with compliant walls and porous space [J]. Transport in Porous Media, 2008, 74: 259–274. DOI: https://doi.org/10.1007/s11242-007-9196-2.

    Article  MathSciNet  Google Scholar 

  33. JAVED M, HAYAT T, ALSAEDI A. Peristalticflow of Burgers’ fluid with compliant walls and heat transfer [J]. Applied Mathematics and Computation, 2014, 244: 654–671. DOI: https://doi.org/10.1016/j.amc.2014.07.009.

    Article  MathSciNet  MATH  Google Scholar 

  34. BHATTI M M, ELLAHI R, ZEESHAN A. Studyof variable magnetic field on the peristaltic flow of Jeffery fluid in a non-uniform rectangular duct having compliant walls [J]. Journal of Molecular Liquid, 2016, 222: 101–108. DOI:https://doi.org/10.1016/j.molliq.2016.07.013.

    Article  Google Scholar 

  35. TANVEER A, HAYAT T, ALSAEDI A, AHMAD B. Onmodified Darcy’s law utilization in peristalsis of Sisko fluid [J]. Journal of Molecular Liquid, 2017, 236: 290–297. DOI: https://doi.org/10.1016/j.molliq.2017.04.041.

    Article  Google Scholar 

  36. HAYAT T, NAWAZ S, ALSAEDI A, RAFIQ M. Influenceof radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel [J]. Results in Physics, 2017, 7: 982–990. DOI: https://doi.org/10.1016/j.rinp.2017.02.022.

    Article  Google Scholar 

  37. AKBAR N S, BUTT A W. Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia [J]. Results in Physics, 2015, 5: 92–98. DOI: https://doi.org/10.1016/j.rinp.2015.03.005.

    Article  Google Scholar 

  38. ALI N, SAJID M, JAVID K, AHMED R. Peristalticflow of Rabinowitsch fluid in a curved channel: Mathematical analysis revisited [J]. Z Naturforsch, 2016, 72: 245–251. DOI: https://doi.org/10.1515/zna-2016-0334.

    Google Scholar 

  39. SADAF H, NADEEM S. Analysisof combined convective and viscous dissipation effects for peristaltic flow Rabinowitsch fluid model [J]. Journal of Bionic Engineering, 2017, 14: 182–190. DOI: https://doi.org/10.1016/S1672-6529(16)60389-X.

    Article  Google Scholar 

  40. SINGH U P, MEDHAVI A, GUPTA R S, BHATT S S. Analysis of peristaltic of non-Newtonian fluids through nonuniform tubes: Rabinowitsch fluid model [J]. Z Naturforsch, 2017, 72: 601–608. DOI: https://doi.org/10.1515/zna-2017-0033.

    Google Scholar 

  41. SARAVANA R, VAJRAVELU K, SREENADH S. Influenceof compliant walls and heat transfer on the peristaltic transport of a Rabinowitsch fluid in an inclined channel [J]. Z Naturforsch, 2018, 73: 833–842. DOI: https://doi.org/10.1515/zna-2018-0181.

    Article  Google Scholar 

  42. VAIDYA H, RAJASHEKHAR C, MANJUNATHA G, PRASAD K V. Rheological properties and peristalsis of Rabinowitsch fluid through complaint porous walls in an inclined channel [J]. Journal of Nanofluids, 2019, 8: 970–979.

    Article  Google Scholar 

  43. AAMIR A, ASGHAR S, AWAIS A. Thermophoresisand concentration effects in a fourth grade peristaltic flow with convective walls [J]. Journal of Central South University, 2017, 24: 1654–1662. DOI: https://doi.org/10.1007/s11771-017-3571-0.

    Article  Google Scholar 

  44. BEAVERS G S, JOSEPH D D. Boundary conditions at a naturally permeable wall [J]. Journal of Fluid Mechanics, 1961, 30: 197–207. DOI: https://doi.org/10.1017/S0022112067001375.

    Article  Google Scholar 

  45. SAFFMAN P G. On the Boundary conditions at the surface of a porous medium, Studies in Applied Mathematics, 1971, 1: 93–101. DOI: https://doi.org/10.1002/sapm197150293.

    Article  MATH  Google Scholar 

  46. ZOLFAGHARIAN A, DARZI M, GHASEMI S E. Analysis of nano droplet dynamics with various sphericities using efficient computational techniques [J]. Journal of Central South University, 2017, 24: 2353–2359. DOI: https://doi.org/10.1007/s11771-017-3647-x.

    Article  Google Scholar 

Download references

Acknowledgement

The authors appreciate the constructive comments of the reviewers which led to definite improvement in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjunatha Gudekote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, H., Choudhari, R., Gudekote, M. et al. Effect of variable liquid properties on peristaltic transport of Rabinowitsch liquid in convectively heated complaint porous channel. J. Cent. South Univ. 26, 1116–1132 (2019). https://doi.org/10.1007/s11771-019-4075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4075-x

Key words

关键词

Navigation