Skip to main content
Log in

Sensitivity analysis of geomechanical parameters affecting a wellbore stability

影响井眼稳定性的地质力学参数敏感性分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive strength (UCS) and cohesion) and acting forces (e.g., field stresses and mud pressure). Accurate determination of these parameters is time-consuming, expensive and sometimes even impossible. This work offers a systematic sensitivity analysis to quantify the amount of each parameter’s effect on the stability of a wellbore. Maximum wellbore wall displacement is used as a stability factor to study the stability of a wellbore. A 3D finite difference method with Mohr model is used for the numerical modeling. The numerical model is verified against an analytical solution. A dimensionless sensitivity factor is developed in order to compare the results of various parameters in the sensitivity analysis. The results show a different order of importance of parameters based on rock strength. The most sensitive properties for a weak rock are the maximum horizontal stress, internal friction angle and formation pressure, respectively, while for a strong rock, the most sensitive parameters are the maximum horizontal stress, mud pressure and pore pressure, respectively. The amount of error in wellbore stability analysis inflicted by the error in estimation of each parameter was also derived.

摘要

井眼稳定性分析在石油工业中得到越来越多的关注。影响井筒稳定性的参数很多,包括地质力学性 质(如弹性模量、轴向抗压强度和黏聚力)和作用力(如场应力和泥浆压力)。精确地确定这些参数不仅耗时、 价格昂贵,有时甚至是不可能的。本文提供了一种系统的灵敏度分析法,以量化每个参数对井筒稳定性的 影响程度。利用最大井壁位移作为研宄井筒稳定性的一个稳定因子。采用Mohr模型的三维有限差分法进 行数值模拟,用解析解对数值模型进行了验证。为了比较各种参数在灵敏度分析中的结果,提出了一种无 量纲灵敏度因子。结果表明,根据岩石强度的不同,参数的重要程度是不同的。对于软岩石,最敏感的参 数分别是最大水平应力、内摩擦角和地层压力,而对于强岩石,最敏感的参数分别是最大水平应力、泥浆 压力和孔隙压力。本文也推算了每个参数的估计误差对井眼稳定性分析的误差的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YAN C, DENG J, CHENG Y, LI M, FENG Y, LI X. Mechanical properties of gas shale during drilling operations [J]. Rock Mech Rock Eng, 2017, 50: 1753–1765

    Article  Google Scholar 

  2. TABATABAEE M SS, NIKOLAEV N I, CHUDINOVA I V. Geomechanical analysis of Wellbore stability in high-pressure, high-temperature formations [C]//79th EAGE Conf Exhib 2017. Paris: EAGE, 2017.

    Google Scholar 

  3. TANG Z, LI Q, YIN H. The influence of solute concentration and temperature of drilling fluids on wellbore failure in tight formation [J]. J Pet Sci Eng, 2018, 160: 276–284. DOI: https://doi.org/10.1016/j.petrol.2017.10.053

    Article  Google Scholar 

  4. CHERNY S, CHIRKOV D, LAPIN V, MURANOV A, BANNIKOV D, MILLER M, WILLBERG D, MEDVEDEV O, ALEKSEENKO O. Two-dimensional modeling of the near-wellbore fracture tortuosity effect [J]. Int J Rock Mech Min Sci, 2009, 46: 992–1000. DOI: https://doi.org/10.1016/j.ijrmms.2009.01.001

    Article  Google Scholar 

  5. MANSOURIZADEH M, JAMSHIDIAN M, BAZARGAN P, MOHAMMADZADEH O. Wellbore stability analysis and breakout pressure prediction in vertical and deviated boreholes using failure criteria-A case study [J]. J Pet Sci Eng, 2016, 145: 482–492. DOI: https://doi.org/10.1016/j.petrol.2016.06.024

    Article  Google Scholar 

  6. GEORGE R C, DENOO S A. Mechanical properties program using borehole analysis and Mohr’s circle [C]//SPWLA 22nd Annu Logging Symp. Mexico City, Mexico: 1981: 212–219.

    Google Scholar 

  7. LU Y L, ELSWORTH D, WANG L G. Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks [J]. Comput Geotech, 2013, 49: 226–244

    Article  Google Scholar 

  8. YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunn Undergr Sp Technol, 2013, 38: 266–278

    Article  Google Scholar 

  9. CAENN R, DARLEY H C, GRAY G R. Composition and properties of drilling and completion fluids [M]. Gulf Professional Publishing, 2011.

    Google Scholar 

  10. ZEYNALI M E. Mechanical and physico-chemical aspects of wellbore stability during drilling operations [J]. J Pet Sci Eng, 2012, 82–83: 120–124

    Article  Google Scholar 

  11. CHEN G. A study of wellbore stability in shales including porelastic, chemical and thermal effects [D]. Univ of Texas at Austin, 2001.

    Google Scholar 

  12. MA T S, CHEN P. A wellbore stability analysis model with chemical mechanical coupling for shale gas reservoirs [J]. J Nat Gas Sci Eng, 2015, 26:72–98.

    Article  Google Scholar 

  13. YUE Y, CHEN S, WANG Z, YANG X, PENG Y, CAI J, NASR-EL-DIN H A. Improving wellbore stability of shale by adjusting its wettability [J]. J Pet Sci Eng, 2017, 161(2): 692–702. DOI: https://doi.org/10.1016/j.petrol.2017.12.023

    Google Scholar 

  14. ZHAO C, SCHAUBS P, HOBBS B. Effects of porosity heterogeneity on chemical dissolution-front instability in fluid-saturated rocks [J]. Journal of Central South University, 2017, 24: 720–725. DOI: https://doi.org/10.1007/s11771-017-3473-1

    Article  Google Scholar 

  15. KADYROV T, TUTUNCU A N. Integrated Wellbore stability analysis for well trajectory optimization and field development in the West Kazakhstan Field [C]//46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association. 2012: 1626–1638.

    Google Scholar 

  16. DUTTA D J, FAROUK M. Wellbore stability and trajectory sensitivity analyses help safe drilling of the first horizontal well in Asl formation, Gulf of Suez, Egypt [C]//IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. 2008: 168–177.

    Google Scholar 

  17. RAHMAN M, HOSSAIN M, RAHMAN S. Hydraulic fracture initiation and propagation: Roles of wellbore trajectory, perforation and stress regimes [J]. J Pet Sci Eng 2000, 27: 129–149.

    Article  Google Scholar 

  18. ZHANG W, LIU Y. Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing [J]. International Journal of Fatigue, 2012, 42: 14–23

    Article  MathSciNet  Google Scholar 

  19. MA T, CHEN P, YANG C, ZHAO J. Wellbore stability analysis and well path optimization based on the breakout width model and Mogi-Coulomb criterion [J]. J Pet Sci Eng, 2015, 135: 678–701. DOI: https://doi.org/10.1016/j.petrol.2015.10.029

    Article  Google Scholar 

  20. UDEGBUNAM J E, AADNØY B S, FJELDE K K. Uncertainty evaluation of wellbore stability model predictions [J]. J Pet Sci Eng, 2014, 124: 254–263. DOI: https://doi.org/10.1016/j.petrol.2014.09.033

    Article  Google Scholar 

  21. ABDOLLAHIPOUR A, RAHMANNEJAD R. Sensitivity analysis of influencing parameters in cavern stability [J]. Int J Min Sci Technol, 2012, 22: 707–710. DOI: https://doi.org/10.1016/j.ijmst.2012.08.020

    Article  Google Scholar 

  22. RUTQVIST J, TSANG C F, STEPHANSSON O. Uncertainty in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture [J]. Int J Rock Mech Min Sci, 2000, 37: 107–20

    Article  Google Scholar 

  23. LOPEZ J L, RAPPOLD P M, UGUETO G A, WIESENECK J B, VU K. Integrated shared earth model: 3D pore-pressure prediction and uncertainty analysis [J]. Lead Edge, 2004: 52–59.

    Google Scholar 

  24. GHOLAMI R, RABIEI M, RASOULI V, AADNOY B, FAKHARI N. Application of quantitative risk assessment in wellbore stability analysis [J]. J Pet Sci Eng, 2015, 135: 185–200. DOI: https://doi.org/10.1016/j.petrol.2015.09.013

    Article  Google Scholar 

  25. ZHANG L, YAN X, YANG X, TIAN Z, YANG H. Failure probability analysis of coal crushing induced by uncertainty of influential parameters under condition of in-situ reservoir [J]. Journal of Central South University, 2014, 21: 2487–2493. DOI: https://doi.org/10.1007/s11771-014-2203-1

    Article  Google Scholar 

  26. SUN Z, ZHANG D. Back analysis for soil slope based on measuring inclination data [J]. Journal of Central South University, 2012, 19: 3291–3297

    Article  Google Scholar 

  27. HU Qi, LI Yun-gui, LÜ Xi-lin. Practical elasto-plastic damage model for dynamic loading and nonlinear analysis of Koyna concrete dam [J]. Journal of Central South University, 2013, 20: 2586–2591

    Article  Google Scholar 

  28. LUO W, LI W. Reliability analysis of supporting pressure in tunnels based on three-dimensional failure mechanism [J]. Journal of Central South University, 2016, 23: 1243–1252

    Article  Google Scholar 

  29. HELTON J C, DAVIS F J. Illustration of sampling-based methods for uncertainty and sensitivity analysis [J]. Risk Anal, 2002, 22: 591–622

    Article  Google Scholar 

  30. NIKADAT N, FATEHI M M, ABDOLLAHIPOUR A. Numerical modelling of stress analysis around rectangular tunnels with large discontinuities (fault) by a hybridized indirect BEM[J]. Journal of Central South University, 2015, 22(11): 4291–4299

    Article  Google Scholar 

  31. YU W, LUO Z, JAVADPOUR F, VARAVEI A, SEPEHRNOORI K. Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs [J]. J Pet Sci Eng, 2014, 113: 1–7. DOI: https://doi.org/10.1016/j.petrol.2013.12.005

    Article  Google Scholar 

  32. NIU S, JING H, HU K, YANG D. Numerical investigation on the sensitivity of jointed rock mass strength to various factors [J]. Min Sci Technol, 2010, 20: 530–534. DOI: https://doi.org/10.1016/S1674-5264(09)60238-6

    Google Scholar 

  33. WANG J G, WANG Z, LI Y. A method for evaluating dynamic tensile damage of rock [J]. Eng Fract Mech, 2008, 75: 2812–2825. DOI: https://doi.org/10.1016/j.engfracmech.2008.01.005

    Article  Google Scholar 

  34. SHI J, LUA J, CHEN L, CHOPP D, SUKUMAR N. X-FEM for Abaqus (XFA) toolkit for automated crack onset and growth simulation: New development, validation, and demonstration [C]//Proc 2009 SIMULIA Cust Conf. 2009: 1–15. DOI: https://doi.org/10.2514/6.2008-1763.

    Google Scholar 

  35. LIU J F, QI T Y, WU Z R. Analysis of ground movement due to metro station driven with enlarging shield tunnels under building and its parameter sensitivity analysis [J]. Tunneling Undergr Sp Technol, 2012, 2: 287–296

    Article  Google Scholar 

  36. CASTRO-FILGUEIRA U, ALEJANO L R, ARZÚA J, IVARS D M. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks [J]. Procedia Eng, 2017, 191: 488–495

    Article  Google Scholar 

  37. DOU H, ZHANG H, YAO S, ZHU D, SUN T, MA S, et al. Measurement and evaluation of the stress sensitivity in tight reservoirs [J]. Pet Explor Dev, 2016, 43: 1116–1123

    Article  Google Scholar 

  38. ZHU W, ZHAO J. Stability analysis and modelling of underground excavations in fractured rocks [M]. Amesterdam: Elsevier, 2004.

    Google Scholar 

  39. SALTELLI A, RATTO M, ANDRES T, CAMPOLONGO F, CARIBONI J, GATELLI D, SAISANA M, TARANTOLA S. Global Sensitivity Analysis: The Primer [M]. John Wiley and Sons, 2008.

    MATH  Google Scholar 

  40. ABDOLLAHIPOUR A, RAHMANNEJAD R. Investigating the effects of lateral stress to vertical stress ratios and caverns shape on the cavern stability and sidewall displacements [J]. Arab J Geosci, 2012, 6(12): 4811–4819. DOI: https://doi.org/10.1007/s12517-012-0698-z

    Article  Google Scholar 

  41. SALENÇON J. Contraction quasi-statique d’une cavite a symetrie spherique ou cylindrique dans un milieu elastoplastique [J]. Ann Des Ponts Chaussées, 1969, 4: 231–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzatollah Kazemzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahipour, A., Soltanian, H., Pourmazaheri, Y. et al. Sensitivity analysis of geomechanical parameters affecting a wellbore stability. J. Cent. South Univ. 26, 768–778 (2019). https://doi.org/10.1007/s11771-019-4046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4046-2

Key words

关键词

Navigation