Skip to main content
Log in

Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests

基于小尺寸蠕变试验的花岗岩残积土循环荷载下的动应力累积模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model.

摘要

通过一系列的小尺寸蠕变试验,首先研究了预压应力为100 kPa的花岗岩残积土的蠕变行 为,从而获得了其在不同应力水平下的三种不同类型的蠕变曲线。基于流变学理论与花岗岩残积土在 不同应力水平下的蠕变特性,建立了花岗岩残积土的蠕变理论模型,与此同时,根据小尺寸蠕变试验 也获得了模型中相关参数的实测数据。然后,基于已建立的蠕变模型,通过推导得到了花岗岩残积土 循环荷载条件下的动应力累积理论模型。该理论模型中存在一个动应力累积的阈值,同时模型显示花 岗岩残积土的动应力累积规律在不同的循环荷载条件下是不同的。最后,对花岗岩残积土小尺寸试样 在不同循环荷载条件下进行了动应力累积规律的试验研究,并将试验结果与理论计算结果进行对比, 从而验证了理论模型的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TANG Lian-sheng, CHEN Hao-kun, SANG Hai-tao, ZHANG Si-yang, ZHANG Jie-yi. Determination of traffic-load-influenced depths in clayey subsoil based on the shakedown concept [J]. Soil Dynamics and Earthquake Engineering, 2015, 77(1): 182–191. DOI: https://doi.org/10.1016/j.soildyn.2015.05.009

    Article  Google Scholar 

  2. TANG Lian-sheng, ZHANG Qing-hua, LIAO Hua-rong. Advance in post-construction settlement of soft subgrade soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3449–3455. DOI: https://doi.org/10.3321/j.issn:1000-6915.2006.z2.016 (in Chinese)

    Google Scholar 

  3. TANG Lian-sheng, XU Tong, LIN Pei-yuan, YU Hai-tao. Studies on dynamic stress characters of layered road system under traffic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3876–3884. DOI: https://doi.org/10.3321/j.issn:1000-6915.2009.z2.084 (in Chinese)

    Google Scholar 

  4. TANG Lian-sheng, ZHANG Qing-hua, YIN Jing-ze, WU Yu-gang, LIAO Hua-rong. Accumulated behavior of subgrade clay under traffic lading [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(6): 143–144. DOI: https://doi.org/10.3321/j.issn:0529-6579.2007.06.033 (in Chinese)

    Google Scholar 

  5. CUI Xin-zhuang, ZHANG Na, ZHANG Jiong, GAO Zhi-jun. In situ tests simulating traffic-load-induced settlement of alluvial silt subsoil [J]. Soil Dynamics and Earthquake Engineering, 2014, 58(1): 10–20. DOI: https://doi.org/10.1016/j.soildyn.2013.11.010

    Article  Google Scholar 

  6. WERKMEISTER S, DAWSON A R, WELLNER F. Permanent deformation behaviour of granular materials [J]. Road Materials and Pavement Design, 2005, 6(1): 31–51. DOI: https://doi.org/10.1080/14680629.2005.9689998

    Article  Google Scholar 

  7. PUPPALA A J, SARIDE S, CHOMTID S. Experimental and modeling studies of permanent strains of subgrade soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1379–1389. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000163

    Article  Google Scholar 

  8. TANG Yi-qun, CUI Zheng-dong, ZHANG Xi, ZHAO Shu-kai. Dynamic response and pore pressure model of the saturated soft clay around the tunnel under vibration loading of Shanghai subway [J]. Engineering Geology, 2008, 98(3, 4): 126–132. DOI: https://doi.org/10.1016/j.enggeo.2008.01.014

    Article  Google Scholar 

  9. WIERMANN C, WAY TR, HORN R, BAILEY A C, BURT E C. Effect of various dynamic loads on stress and strain behavior of a Norfolk sandy loam [J]. Soil and Tillage Research, 1999, 50(2): 127–135. DOI: https://doi.org/10.1016/S0167-1987(98)00199-8

    Article  Google Scholar 

  10. SHOOP S, COUTERMARSH B A, DIEMAND D, WAY T. Using soil stress state transducers in freezing ground [C]// Conference on Cold Regions Engineering, 2009: 562–571. DOI: https://doi.org/10.1061/41072(359)55.

    Google Scholar 

  11. LU Zheng, YAO Hai-lin, WU Wan-ping, CHEN Ping. Dynamic stress and deformation of a layered road structure under vehicle traffic loads: Experimental measurements and numerical calculations [J]. Soil Dynamics and Earthquake Engineering, 2012, 39(1): 100–112. DOI: https://doi.org/10.1016/j.soildyn.2012.03.002

    Google Scholar 

  12. GARG N, PECHT F, JIA Q. Subgrade stress measurements under heavy aircraft gear loading at FAA national airport pavement test facility [C]//GeoShanghai International Conference. Shanghai, China. 2010: 484–491. DOI: https://doi.org/10.1061/41104(377)62.

    Google Scholar 

  13. THAKUR J K, HAN J, POKHAREL S K, PARSONS R L. Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading [J]. Geotextiles and Geomembranes, 2012, 35(1): 14–24. DOI: https://doi.org/10.1016/j.geotexmem.2012.06.004

    Article  Google Scholar 

  14. EGUCHI T, MURO T. Measurement of compacted soil density in a compaction of thick finishing layer [J]. Journal of Terramechanics, 2007, 44(5): 347–353. DOI: https://doi.org/10.1016/j.jterra.2007.10.001

    Article  Google Scholar 

  15. SUN Xiao-hui, HAN Jie, KWON J, PARSONS R L, WAYNE M. Radial stresses and resilient deformations of geogrid-stabilized unpaved roads under cyclic plate loading tests [J]. Geotextiles and Geomembranes, 2015, 43(5): 440–449. DOI: https://doi.org/10.1016/j.geotexmem.2015.04.018

    Article  Google Scholar 

  16. TAFRESHI S N M, KHALAJ O, DAWSON A R. Repeated loading of soil containing granulated rubber and multiple geocell layers [J]. Geotextiles and Geomembranes, 2014, 42(1): 25–38. DOI: https://doi.org/10.1016/j.geotexmem.2013.12.003

    Article  Google Scholar 

  17. ABDELKRIM M, BONNET G, BUHAN P. A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading [J]. Computers and Geotechnics, 2003, 30(6): 463–476. DOI: https://doi.org/10.1016/S0266-352X(03)00010-7

    Article  Google Scholar 

  18. ALAKUKKU L, WEISSKOPF P, CHAMEN W C T, TIJINK F G J, LINDEN J P, PIRES S, SOMMER C, SPOOR G. Prevention strategies for field traffic-induced subsoil compaction: A review: Part 1. Machine/soil interactions [J]. Soil and Tillage Research, 2003, 73(1, 2): 145–160. DOI: https://doi.org/10.1016/S0167-1987(03)00107-7

    Article  Google Scholar 

  19. WITHERS P J, BHADESHIA H K D H. Residual stress. Part 1-Measurement techniques [J]. Materials Science and Technology, 2001, 17(4): 355–365. DOI: https://doi.org/10.1179/030716979803276480

    Article  Google Scholar 

  20. WITHERS P J, BHADESHIA H K D H. Residual stress. Part 2-Nature and origins [J]. Materials Science and Technology, 2001, 17(4): 366–375. DOI: https://doi.org/10.1179/026708301101510087

    Article  Google Scholar 

  21. MICHALOWSKI R L, NADUKURU S S. Static fatigue, time effects, and delayed increase in penetration resistance after dynamic compaction of sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5): 564–574. DOI: https://doi.org/10.1061/(ASCE)GT.943-5606.0000611

    Article  Google Scholar 

  22. HAWLADER B C, MUHUNTHAN B, IMAI G. Viscosity effects on one-dimensional consolidation of clay [J]. International Journal of Geomechanics, 2003, 3(1): 99–110. DOI: https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(99)

    Article  Google Scholar 

  23. MARKGRAF W, HORN R, PETH S. An approach to rheometry in soil mechanics—Structural changes in bentonite, clayey and silty soils [J]. Soil and Tillage Research, 2006, 91(1, 2): 1–14. DOI: https://doi.org/10.1016/j.still.2006.01.007

    Article  Google Scholar 

  24. PISANÒ F, JEREMIĆ B. Simulating stiffness degradation and damping in soils via a simple visco-elastic-plastic model [J]. Soil Dynamics and Earthquake Engineering, 2014, 63(1): 98–109. DOI: https://doi.org/10.1016/j.soildyn.2014.02.014

    Article  Google Scholar 

  25. YIN Jian-hua. Fundamental issues of elastic viscoplastic modeling of the time-dependent stress-strain behavior of geomaterials [J]. International Journal of Geomechanics, 2015, 15(5): A4015002. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000485

    Google Scholar 

  26. DONG Qiao, HUANG Bao-shan. Laboratory evaluation on resilient modulus and rate dependencies of rap used as unbound base material [J]. Journal of Materials in Civil Engineering, 2014, 26(2): 379–383. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000820

    Article  Google Scholar 

  27. WANG Nian-xiang, ZHANG Wei-min, GU Xing-wen, ZENG You-jin. Model test on inundation swelling deformation of expansive soil foundation [J]. Journal of Highway and Transportation Research and Development 2008, 3(2): 72–76. DOI: https://doi.org/10.1061/JHTRCQ.0000248.

    Google Scholar 

  28. RABOTNOV Y N. Equilibrium of an elastic medium with after-effect [J]. Fractional Calculus and Applied Analysis, 2014, 17(3): 684–696. DOI: https://doi.org/10.2478/s13540-014-0193-1

    Article  MathSciNet  MATH  Google Scholar 

  29. QIAN Jian-gui, WANG Yong-gang, YIN Zhen-yu, HUANG Mao-song. Experimental identification of plastic shakedown behavior of saturated clay subjected to traffic loading with principal stress rotation [J]. Engineering Geology, 2016, 214: 29–42. DOI: https://doi.org/10.1016/j.enggeo.2016.09.012

    Article  Google Scholar 

  30. HU Bo, YANG Sheng-qi, XU Peng. A nonlinear rheological damage model of hard rock [J]. Journal of Central South University, 2018, 25(7): 1665–1677. DOI: https://doi.org/10.1007/s11771-018-3858-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-sheng Tang  (汤连生).

Additional information

Foundation item: Projects(41572277, 41877229) supported by the National Natural Science Foundation of China; Project(2018B030311066) supported by the Natural Science Foundation of Guangdong Province, China; Project(201607010023) supported by the Science and Technology Program of Guangzhou, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Ls., Zhao, Zl., Chen, Hk. et al. Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests. J. Cent. South Univ. 26, 728–742 (2019). https://doi.org/10.1007/s11771-019-4043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4043-5

Key words

关键词

Navigation