Skip to main content
Log in

Numerical study of flocculation settling and thickening of whole-tailings in deep cone thickener using CFD approach

深锥浓密机内全尾砂絮凝沉降与浓密的CFD模拟

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.

摘要

深锥浓密机是膏体充填的关键设备,研究其内部全尾砂絮凝沉降与浓密特性很有必要。本文将 CFD和群体平衡模型(PBM)进行耦合,用以研究深锥浓密机内的颗粒粒径分布(PSD)及其底流浓 度。基于生产实际,研究了耙架转速、进料流量、进料料浆浓度对PSD和底流浓度的影响。PSD随 着耙架转速、进料流量、进料料浆浓度的变化趋势几乎一致,但是进料流量的影响最小。底流浓度随 着耙架转速和进料流量先上升后减小,但是随着进料料浆浓度不断波动。最终,获得了最佳耙架转速、 进料流量、进料料浆浓度分别为17 r/mm、3.25 m3/h、20%,从而为拜什塔木铜矿的实际生产提供指 导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CAO Shuai, SONG Wei-dong. Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill [J]. International Journal of Mineral Processing, 2017, 166: 62–68. DOI: https://doi.org/10.1016/j.minpro.2017.07.005

    Article  Google Scholar 

  2. WU Ai-xiang, CHENG Hai-yong, YANG Ying, ZHANG Lian-fu. Development and challenge of paste technology in China [C]//20th International Seminar on Paste and Thickened Tailings (Paste 2017). Beijing, China: Paste, 2017: 2–11. DOI: https://papers.acg.uwa.edu.au/p/1752_01_Wu/.

    Google Scholar 

  3. WU Ai-xiang, WANG Yong, WANG Hong-jiang. Status and prospects of the paste backfill technology [J]. Metal Mine, 2016, 45(7): 1–9. DOI: https://doi.org/10.3969/j.issn.1001-1250.2016.07.001 (in Chinese)

    Google Scholar 

  4. ZHANG Qin-li, ZHOU Deng-hui, WANG Xin-min, ZHAO Jian-wen. Experimental study on flocculating sedimentation of ultra-fine unclassified tailings [J]. Journal of Guangxi University: Nat Sci Ed, 2013, 38(2): 451–455. DOI: https://doi.org/10.13624/j.cnki.issn.1001-7445.2013.02.004 (in Chinese)

    Google Scholar 

  5. RUAN Zhu-en, LI Cui-ping, SHI Cong. Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener [J]. Journal of Central South University, 2016, 23(3): 740–749. DOI: https://doi.org/10.1007/s11771-016-3119-8

    Article  Google Scholar 

  6. BANISI S, YAHYAEI M. Feed dilution-based design of a thickener for refuse slurry of a coal preparation plant [J]. International Journal of Coal Preparation & Utilization, 2008, 28(4): 201–223. DOI: https://doi.org/10.1080/19392690802391189

    Article  Google Scholar 

  7. USHER S P, SPEHAR R, SCALES P J. Theoretical analysis of aggregate densification: Impact on thickener performance [J]. Chemical Engineering Journal, 2009, 151(1): 202–208. DOI: https://doi.org/10.1016/j.cej.2009.02.027

    Article  Google Scholar 

  8. WU Ai-xiang, ZHOU Jing, YIN Sheng-hua, WANG Lei-ming. Influence factors on flocculation sedimentation of unclassified tailings [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 439–446. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2016.02.023 (in Chinese)

    Google Scholar 

  9. JIAO Hua-zhe, WU Ai-xiang, WANG Hong-jiang, LIU Xiao-hui, YANG Sheng-kai, XIAO Yun-tian. Experiment study on the flocculation settlement characteristic of unclassified tailings [J]. Journal of University of Science & Technology Beijing, 2011, 33(12): 1437–1441. DOI: https://doi.org/10.13374/j.issn1001-053x.2011.12.005 (in Chinese)

    Google Scholar 

  10. YANG Chao, GUO Li-jie, XU Wen-yuan, LI Xin, XUE Shan-shan. Experimental study on the rule of flocculation sedimentation of filling tailings [J]. Gold, 2014, 35(6): 39–42. DOI: https://doi.org/10.11792/hj20140610 (in Chinese)

    Google Scholar 

  11. CIFTCI H, ISIK S. Settling characteristics of coal preparation plant fine tailings using anionic polymers [J]. Korean Journal of Chemical Engineering, 2017: 1–7. DOI: https://doi.org/10.1007/s11814-017-0123-0.

    Google Scholar 

  12. OWEN A T, NGUYEN T V, FAWELL P D. The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners [J]. International Journal of Mineral Processing, 2009, 93(2): 115–127. DOI: https://doi.org/10.1016/j.minpro.2009.07.001

    Article  Google Scholar 

  13. NGUYEN T V, FARROW J B, SMITH J, FAWELL P D. Design and development of a novel thickener feedwell using computational fluid dynamics [J]. Journal-South African Institute of Mining and Metallurgy, 2012, 112(112): 939–948. DOI: http://www.saimm.co.za/Journal/v112n11p939.pdf

    Google Scholar 

  14. TAO D, PAREKH B K, ZHAO Yue-ming, ZHANG P. Pilot-scale demonstration of deep Cone™ paste thickening process for phosphatic Clay/Sand disposal [J]. Separation Science & Technology, 2010, 45(10): 1418–1425. DOI: https://doi.org/10.1080/01496391003652783

    Article  Google Scholar 

  15. GHESHLAGHI M E, GOHARRIZI A S, SHAHRIVAR A A. Simulation of a semi-industrial pilot plant thickener using CFD approach [J]. International Journal of Mining Science and Technology, 2013, 23(1): 63–68. DOI: https://doi.org/10.1016/j.ijmst.2013.01.010

    Article  Google Scholar 

  16. GHESHLAGHI M E, GOHARRIZI A S, SHAHRIVAR A A, ABDOLLAHI H. Modeling industrial thickener using computational fluid dynamics (CFD), a case study: Tailing thickener in the Sarcheshmeh copper mine [J]. International Journal of Mining Science and Technology, 2013, 23(6): 885–892. DOI: https://doi.org/10.1016/j.ijmst.2013.11.002

    Article  Google Scholar 

  17. ZHOU Tian, LI Mao, LI Qiu-long, LEI Bo, ZHOU Qian, ZHOU Jie-ming. Numerical simulation of flow regions in red mud separation thickener’s feedwell by analysis of residence-time distribution [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1117–1124. DOI: https://doi.org/10.1016/S1003-6326(14)63170-8

    Article  Google Scholar 

  18. RAHIMI M, ABDOLLAHZADEH A A, REZAI B. Dynamic simulation of tailing thickener at the Tabas coal washing plant using the phenomenological model [J]. International Journal of Mineral Processing, 2016, 154: 35–40. DOI: https://doi.org/10.1016/j.minpro.2016.07.003

    Article  Google Scholar 

  19. HUANG Gen, LIU Jiong-tian, WANG Li-jun, SONG Zhi-hao. Flow field simulation of agitating tank and fine coal conditioning [J]. International Journal of Mineral Processing, 2016, 148: 116–123. DOI: https://doi.org/10.1016/j.minpro.2016.01.020

    Article  Google Scholar 

  20. ŠUTALO I D, PATERSON D A, RUDMAN M. Flow visualisation and computational prediction in thickener rake models [J]. Minerals Engineering, 2003, 16(2): 93–102. DOI: https://doi.org/10.1016/S0892-6875(02)00256-X

    Article  Google Scholar 

  21. KAHANE R B, NGUYEN T, SCHWARZ M P. CFD modelling of thickeners at Worsley Alumina Pty Ltd [J]. Applied Mathematical Modelling, 2002, 26(2): 281–296. DOI: https://doi.org/10.1016/s0307-904x(01)00061-0

    Article  MATH  Google Scholar 

  22. LI Hui, WANG Hong-jiang, WU Ai-xiang, JIAO Hua-zhe, LIU Xiao-hui. Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics [J]. Journal of University of Science & Technology Beijing, 2013, 35(12): 1553–1558. DOI: https://doi.org/10.13374/j.issn1001-053x.2013.12.007 (in Chinese)

    Google Scholar 

  23. RUDMAN M, SIMIC K, PATERSON D A, STRODE P, BRENT A, ŠUTALO I D. Raking in gravity thickeners [J]. International Journal of Mineral Processing, 2008, 86(1): 114–130. DOI: https://doi.org/10.1016/j.minpro.2007.12.002

    Article  Google Scholar 

  24. RUDMAN M, PATERSON D A, SIMIC K. Efficiency of raking in gravity thickeners [J]. International Journal of Mineral Processing, 2010, 95(1): 30–39. DOI: https://doi.org/10.1016/j.minpro.2010.03.007

    Article  Google Scholar 

  25. DU Jian-hua, PUSHKAROVA R A, SMART R S C. A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes [J]. International Journal of Mineral Processing, 2009, 93(1): 66–72. DOI: https://doi.org/10.1016/j.minpro.2009.06.004

    Article  Google Scholar 

  26. WU Ai-xiang, WANG Yong, WANG Hong-jiang. Effect of rake rod number and arrangement on tailings thickening performance [J]. Journal of Central South University, 2014, 45(1): 244–248. DOI: http://www.zndxzk.com.cn/down/2014/01_zkb/34-p0244-123425.pdf (in Chinese)

    Google Scholar 

  27. WU Ai-xiang, JIAO Hua-zhe, WANG Hong-jiang, YANG Sheng-kai, YAO Gao-hui, LIU Xiao-hui. Mechanical model of scraper rake torque in deep-cone thickener [J]. Journal of Central South University, 2012, 43(4): 1469–1474. DOI: http://www.zndxzk.com.cn/down/upfile/soft/20120419/43-p1469-110030.pdf (in Chinese)

    Google Scholar 

  28. WEI Lu-bin, SUN Ming-yang. Numerical studies of the influence of particles’ size distribution characteristics on the gravity separation performance of liquid-solid fluidized bed separator [J]. International Journal of Mineral Processing, 2016, 157: 111–119. DOI: https://doi.org/10.1016/j.minpro.2016.10.004

    Article  Google Scholar 

  29. AJAMU S O, IGE J A. Influence of coarse aggregate type and mixing method on properties of concrete made from natural aggregates in Ogbomoso Oyo state Nigeria [J]. International Journal of Engineering and Technology, 2015, 5(7): 426–433. DOI: http://www.iet-journals.org/archive/2015/july_vol_5_no_7/27261431446178.pdf

    Google Scholar 

  30. WU Ai-xiang, RUAN Zhu-en, WANG Yi-ming, YIN Sheng-hua, WANG Shao-yong, WANG Yong, WANG Jian-dong. CFD simulation of long-distance pipeline transportation properties of whole-tailings paste with high sliming [J]. Journal of Central South University, 2018, 25(1): 141–150. DOI: https://doi.org/10.1007/s11771-018-3724-9

    Article  Google Scholar 

  31. RANDOLPH A D, LARSON M A. Theory of particulate processes (2nd ed) [M]. San Diego, CA: Academic Press, 1988: 41–63.

    Google Scholar 

  32. RAMKRISHNA D. Population balance: Theory and application to particulate systems in engineering [M]. New York: Academic Press, 2000: 7–45.

    Book  Google Scholar 

  33. YUAN C, LAURENT F, FOX R O. An extended quadrature method of moments for population balance equations [J]. Journal of Aerosol Science, 2012, 51(51): 1–23. DOI: https://doi.org/10.1016/j.jaerosci.2012.04.003

    Article  Google Scholar 

  34. McGRAW R. Description of aerosol dynamics by the quadrature method of moments [J]. Aerosol Science & Technology, 1997, 27(2): 255–265. DOI: https://doi.org/10.1080/02786829708965471

    Article  Google Scholar 

  35. LUO H, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions [J]. Aiche Journal, 1996, 42(5): 766–776. DOI: https://doi.org/10.1002/aic.690420505

    Article  Google Scholar 

  36. GHADIRI M, ZHANG Z. Impact attrition of particulate solids. Part 1: A theoretical model of chipping [J]. Chemical Engineering Science, 2002, 57(17): 3659–3669. DOI: https://doi.org/10.1016/S0009-2509(02)00240-3

    Article  Google Scholar 

  37. MORENO-ATANASIO R, GHADIRI M. Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy [J]. Chemical Engineering Science, 2006, 61(8): 2476–2481. DOI: https://doi.org/10.1016/j.ces.2005.11.019

    Article  Google Scholar 

  38. VIGIL R D, ZIFF R M. On the stability of coagulation-fragmentation population balances [J]. Journal of Colloid & Interface Science, 1989, 133(1): 257–264. DOI: https://doi.org/10.1016/0021-9797(89)90300-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu-en Ruan  (阮竹恩) or Cui-ping Li  (李翠平).

Additional information

Foundation item: Project(2016YFC0600709) supported by the National Key R & D Program of China; Projects(51574013, 51774039) supported by the National Natural Science Foundation of China; Project(FRF-TP-17-024A1) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Ax., Ruan, Ze., Li, Cp. et al. Numerical study of flocculation settling and thickening of whole-tailings in deep cone thickener using CFD approach. J. Cent. South Univ. 26, 711–718 (2019). https://doi.org/10.1007/s11771-019-4041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4041-7

Key words

关键词

Navigation