Skip to main content
Log in

Quantitative characterization of sealing integrity by caprock of Paleocene Artashi Formation gypsolyte rock in Kashi Sag of Tarim Basin, NW China

塔里木盆地喀什凹陷古近系阿尔塔什组膏岩盖层封盖完整性量化表征

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Maintaining caprock integrity is prerequisite for hydrocarbon accumulation. And gypsolyte caprock integrity is mainly affected by fracturing. Composition, damage behavior and mechanical strength of Paleocene Artashi Formation gypsolyte rock that seals significant petroleum in the Kashi Sag of Tarim Basin had been revealed via X-ray diffraction and triaxial compression test. The results indicate the Artashi Formation can be lithologically divided into the lower and upper lithologic members. The lower member comprises gypsum as the dominant mineral, and the cohesion and friction coefficient are 8 MPa and 0.315, respectively. Similarly, the upper lithologic member consists mainly of anhydrite at the cohesion and coefficient of internal friction values of 18 MPa and 0.296. Given that the failure criterion and brittle-ductile transition factors during burial, the sealing integrity of Artashi Formation can be quantized for seven different stages. The reservoirs at the bottom of Artashi Formation caprock buried from 2285 m to 3301 m are expected to be the most favorable exploration target in the Kashi Sag.

摘要

盖层保持自身的封盖完整性是油气聚集成藏中的关键因素,膏岩盖层的完整性主要受破裂作用 的影响。本文主要通过X射线衍射和三轴压缩实验研究了塔里木盆地喀什凹陷古近系阿尔塔什组膏岩 盖层的矿物成分、变形过程、岩石力学强度、应力-应变等特征。结果表明,阿尔塔什组具有明显的 上下两段式沉积特点,下段主要由白色石膏组成,内聚力和内摩擦因数分别为8 MPa和0.315;上段 则主要为灰白色硬石膏,内聚力和内摩擦因数分别为18 MPa和0.296。综合考虑埋藏过程中的破裂和 脆塑性转换因素,阿尔塔什组膏岩的封盖过程可以量化表征为7个阶段,埋藏深度在2285~3301 m的 膏岩之下的储集层是本区最有利的勘探目标。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIN Zhi-jun, LONG Sheng-xiang, ZHOU Yan, WO Yu-jin, XIAO Kai-hua, YANG Zhi-qiang, YIN Jin-yin. A study on the distribution of saline-deposit in southern China [J]. Oil & Gas Geology, 2006, 27(5): 571–583. DOI: https://doi.org/10.3321/j.issn:0253-9985.2006.05.001. (in Chinese)

    Google Scholar 

  2. BAHROUDI A, KOYI H A. Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin [J]. Marine and Petroleum Geology, 2004, 21(10): 1295–1310. DOI: https://doi.org/10.1016/j.marpetgeo.2004.09.001.

    Article  Google Scholar 

  3. VAZIRI-MOGHADDAM H, SEYRAFIAN A, TAHERI A, MOTIEI H. Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: Microfacies, paleoenvironment and depositional sequence [J]. Revista Mexicana de Ciencias Geológicas, 2010, 27(1): 56–71. DOI: https://doi.org/10.1016/j.quascirev.2010.01.005.

    Google Scholar 

  4. BROOKFIELD M E, HASHMAT A. The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan) [J]. Earth-Science Reviews, 2001, 55(1): 41–71. DOI: https://doi.org/10.1016/S0012-8252(01)00036-8.

    Article  Google Scholar 

  5. NIE Ming-long, WU Lei, SUN Lin, GAO An-hu. Salt-related fault characteristics and their petroleum geological significance in Zarzhu terrace and its adjacent areas, the Amu Darya Basin [J]. Oil & Gas Geology, 2013, 34(6): 803–808. DOI: https://doi.org/10.11743/ogg20130613. (in Chinese)

    Google Scholar 

  6. ZHANG Chang-bao, LUO Dong-kun, WEI Chun-guang. Controlling factors of natural gas accumulation in the Amu Darya Basin, Central Asia [J]. Oil & Gas Geology, 2015, 36(5): 766–773. DOI: https://doi.org/10.11743/ogg20150507. (in Chinese)

    Google Scholar 

  7. LV Xiu-xiang, JIN Zhi-jun, ZHOU Xin-yuan, PI Xue-jun. Oil and gas accumulation related to evaporite rocks in Kuqa depression of Tarim basin [J]. Petroleum Exploration and Development, 2000, 27(4): 20–21. DOI: https://doi.org/10.3321/j.issn:1000-0747.2000.04.004. (in Chinese)

    Google Scholar 

  8. ZHUO Qin-gong, MENG Fan-wei, SONG Yan, YANG Hai-jun, LI Yong, NI Pei. Hydrocarbon migration through salt: evidence from Kelasu tectonic zone of Kuqa foreland basin in China [J]. Carbonates and Evaporites, 2014, 29(3): 291–297. DOI: https://doi.org/10.1007/s13146-013-0177-y.

    Article  Google Scholar 

  9. DEWHURST D N, JONES R M, RAVEN M D. Microstructural and petrophysical characterization of Muderong Shale: application to top seal risking [J]. Petroleum Geoscience, 2002, 8(4): 371–383. DOI: https://doi.org/10.1144/petgeo.8.4.371.

    Article  Google Scholar 

  10. DEWHURST D N, HENNIG A L. Geomechanical properties related to top seal leakage in the Carnarvon Basin, Northwest Shelf, Australia [J]. Petroleum Geoscience, 2003, 9(3): 255–263. DOI: https://doi.org/10.1144/1354-079302-557.

    Article  Google Scholar 

  11. NYGÁRD R, GUTIERREZ M, BRATLI R K, HOEG K. Brittle-ductile transition, shear failure and leakage in shales and mudrocks [J]. Marine and Petroleum Geology, 2006, 23(2): 201–212. DOI: https://doi.org/10.1016/j.marpetgeo.2005.10.001.

    Article  Google Scholar 

  12. PETRIE E S, EVANS J P, BAUER S J. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs [J]. AAPG Bulletin, 2014, 98(11): 2365–2389. DOI: https://doi.org/10.1306/06171413126.

    Article  Google Scholar 

  13. HAN Liang, ZHOU Yong-sheng, HE Chang-rong, LI Hai-bing. Sublithostatic pore fluid pressure in the brittle-ductile transition zone of Mesozoic Yingxiu-Beichuan fault and its implication for the 2008 Mw 7.9 Wenchuan earthquake [J]. Journal of Asian Earth Sciences, 2016, 117: 107–118. DOI: https://doi.org/10.1016/j.jseaes.2015.12.009.

    Article  Google Scholar 

  14. YAZDI A K, SMYTH H D. Implementation of design of experiments approach for the micronization of a drug with a high brittle-ductile transition particle diameter [J]. Drug Development Communications, 2016, 43(3): 364–371. DOI: https://doi.org/10.1080/03639045.2016.1253727.

    Google Scholar 

  15. NEVITT J M, WARREN J M, POLLARD D D. Testing constitutive equations for brittle-ductile deformation associated with faulting in granitic rock [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6269–6293. DOI: https://doi.org/10.1002/2017JB014000.

    Google Scholar 

  16. YUAN Yu-song, JIN Zhi-jun, ZHOU Yan, LIU Jun-xin, LI Shuang-jian, LIU Quan-you. Burial depth interval of the shale brittle-ductile transition zone and its implications in shale gas exploration and production [J]. Petroleum Science, 2017(4): 1–11. DOI: https://doi.org/10.1007/s12182-017-0189-7.

    Google Scholar 

  17. HU Kun, ZHU Qi-zhi, CHEN Liang, SHAO Jian-fu, LIU Jian. A micromechanics-based elastoplastic damage model for rocks with a brittle-ductile transition in mechanical response [J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1729–1737. DOI: https://doi.org/10.1007/s00603-018-1427-z.

    Article  Google Scholar 

  18. PAPESCHI S, MUSUMECI G, MAZZARINI F. Evolution of shear zones through the brittle-ductile transition: The Calamita Schists (Elba Island, Italy) [J]. Journal of Structural Geology, 2018, 113: 100–114. DOI: https://doi.org/10.1016/j.jsg.2018.05.023.

    Article  Google Scholar 

  19. WONG T, BAUD P. The brittle-ductile transition in porous rock: A review [J]. Journal of Structural Geology, 2012, 44: 25–53. DOI: https://doi.org/10.1016/j.jsg.2012.07.010.

    Article  Google Scholar 

  20. ZHANG Lei, HE Chang-rong. Frictional properties of phyllosilicate-rich mylonite and conditions for the brittle-ductile transition [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 3017–3047. DOI: https://doi.org/10.1002/2015JB012489.

    MathSciNet  Google Scholar 

  21. WANG Ming-yang, FAN Peng-xian, QIAN Qi-hu, DENG Hong-jian. Elastoplastic model for discontinuous shear deformation of deep rock mass [J]. Journal of Central South University of Technology, 2011, 18(3): 866–873. DOI: https://doi.org/10.1007/s11771-011-0775-6.

    Article  Google Scholar 

  22. DEHANDSCHUTTER B, VANDYCKE S, SINTUBIN M, VANDENBERGHE N, WOUTERS L. Brittle fractures and ductile shear bands in argillaceous sediments: inferences from Oligocene Boom Clay (Belgium) [J]. Journal of Structural Geology, 2005, 27(6): 1095–1112. DOI: https://doi.org/10.1016/j.jsg.2004.08.014.

    Article  Google Scholar 

  23. HE Deng-fa, LI De-sheng, HE Jin-you, WU Xiao-zhi. Comparison in petroleum geology between Kuqa depression and Southwest depression in Tarim Basin and its exploration significance [J]. Acta Petrolei Sinica, 2013, 34(2): 201–218. DOI: https://doi.org/10.7623/syxb201302001. (in Chinese)

    Google Scholar 

  24. LI Shi-zhen, KANG Zhi-hong, QIU Hai-jun, MENG Miao-miao, FENG Zhi-gang, LI Shi-Chao. Hydrocarbon accumulation modes of the southwest depression in Tarim Basin [J]. Geology in China, 2014, 41(2): 387–398. DOI: https://doi.org/10.3969/j.issn.1000-3657.2014.02.007. (in Chinese)

    Google Scholar 

  25. WANG Zhao-ming, ZHAO Meng-jun, ZHANG Shui-chang, SONG Yan, XIAO Zhong-yao, WANG Qing-hua, QIN Sheng-fei. A preliminary study on formation of Akemo gas field in the Kashi Sag, Tarim Basin [J]. Chinese Journal of Geology, 2005, 40(2): 237–247. DOI: https://doi.org/10.1016/j.molcatb.2005.02.001. (in Chinese)

    Google Scholar 

  26. DU Jin-hu, WANG Zhao-ming, LEI Gang-lin, HU Jian-feng. A discovery in well Kedong-1 and its exploration significance [J]. China Petroleum Exploration, 2011, 16(2): 1–5. DOI: https://doi.org/10.3969/j.issn.1672-7703.2011.02.001. (in Chinese)

    Google Scholar 

  27. XING Hou-song, LI Jun, SUN Hai-yun, WANG Hai, YANG Qing, SHAO Li-yan, YANG Dong, YANG Shen. Differences of hydrocarbon reservoir forming between southwestern Tarim basin and Kuche mountain front [J]. Natural Gas Geoscience, 2012, 23(1): 36–45. (in Chinese)

    Google Scholar 

  28. ZHANG Liang, HAN Er-bin, ZHU Li-chun, ZENG Chang-min, FAN Qiu-hai, WU Kun, CAO Yang-tong, JIAO Peng-cheng. Characteristics of evaporites sedimentary cycles and its controlling factors of Paleocene Aertashi Formation in the southwestern Tarim depression [J]. Acta Geologica Sinica, 2015, 89(11): 2161–2170. (in Chinese)

    Google Scholar 

  29. LUO Jin-hai, ZHOU Xin-yuan, QIU Bin, YANG Zhi-lin, YIN Hong, SHANG Xin-lu. Structural features of fold-thrust zone in Kashi depression, western Tarim basin [J]. Oil & Gas Geology, 2004, 25(2): 199–203. DOI: https://doi.org/10.11743/ogg20040214. (in Chinese)

    Google Scholar 

  30. LUO Jin-hai, ZHOU Xin-yuan, QIU Bin, YIN Hong, LI Jian-li. Mesozoic-Cenozoic five tectonic events and their petroleum geologic significances in west Tarim Basin [J]. Petroleum Exploration and Development, 2005, 32(1): 18–22. DOI: https://doi.org/10.3321/j.issn:1000-0747.2005.01.005. (in Chinese)

    Google Scholar 

  31. ZHOU Xin-yuan, LUO Jin-hai, MAI Guang-rong. Structural features and petroleum geology of Kashi Sag and its adjacent area in western Tarim Basin [M]. Beijing: Petroleum Industry Press, 2005. (in Chinese)

    Google Scholar 

  32. ZHAO Wen-zhi, ZHANG Guang-ya. Evolution and hydrocarbon geology of passive continental margin: Taking southwest region of Tarim Basin as an example [M]. Beijing: Petroleum Industry Press, 2007. (in Chinese)

    Google Scholar 

  33. FANG Ai-min, MA Jian-ying, WANG Shi-gang, ZHAO Yue, HU Jian-min. Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogen since Late Paleozoic [J]. Acta Petrologica Sinica, 2009, 25(12): 3396–3406. (in Chinese)

    Google Scholar 

  34. LUO Jin-hai, ZHOU Xin-yuan, QIU Bin, YANG Zhi-ling, YIN Hong, LI Yong, LI Jian-li. Petroleum geology and geological evolution of the Tarim-Karakum and adjacent areas [J]. Geological Review, 2005, 51(4): 409–415. DOI: https://doi.org/10.3321/j.issn:0371-5736.2005.04.007. (in Chinese)

    Google Scholar 

  35. SANG Hong, CAO Yang-tong, ZHU Li-chun, ZHANG Hua, ZHANG Liang, YAO Fo-jun, ZENG Chang-min, JIAO Peng-cheng, JIANG Hong, LIANG Hua. Preliminary study of evaporites deposition from the Mesozoic to Cenozoic in southwestern Tarim Depression [J]. Journal of Palaeogeography, 2014, 16(4): 473–482. DOI: https://doi.org/10.7605/gdlxb.2014.04.039. (in Chinese)

    Google Scholar 

  36. MA Hua-dong, YANG Zi-jiang. Evolution of the Cenozoic in southwestern Tarim Basin [J]. Xinjiang Geology, 2003, 21(1): 92–95. DOI: https://doi.org/10.3969/j.issn.1000-8845.2003.01.015. (in Chinese)

    Google Scholar 

  37. SHAO Long-yi, HE Zhi-ping, GU Jia-yu, LUO Wen-lin, JIA Jin-hua, LIU Yong-fu, ZHANG Li-juan, ZHANG Peng-fei. Lithofacies palaeogeography of the Paleogene in Tarim Basin [J]. Journal of Palaeogeography, 2006, 8(3): 353–364. DOI: https://doi.org/10.1016/S1872-2040(06)60004-2. (in Chinese)

    Google Scholar 

  38. ZHUANG Dao-ze, LAN Xian, LI Yan-qing. Geophysical exploration in Xinjiang [M]. Beijing: Geological Publishing House, 2015. (in Chinese)

    Google Scholar 

  39. LI Xian-qing, XIAO Xian-ming, XIAO Zhong-yao, HU Guo-yi, MI Jing-kui, TANG Yong-chun. Geochemical characteristics and origin of natural gas from Ake-1 gas pool in the Tarim Basin [J]. Natural Gas Geoscience, 2005, 16(1): 48–53. DOI: https://doi.org/10.3969/j.issn.1672-1926.2005.01.011. (in Chinese)

    Google Scholar 

  40. KOHLSTEDT D L, EVANS B, MACKWELL S J. Strength of the lithosphere: Constraints imposed by laboratory experiments [J]. Journal of Geophysical Research Solid Earth, 1995, 100(B9): 17587–17602. DOI: https://doi.org/10.1029/95JB01460.

    Article  Google Scholar 

  41. BYERLEE J D. Brittle-ductile transition in rocks [J]. Journal of Geophysics Research, 1968, 73(14): 4741–4750. DOI: https://doi.org/10.1029/JB073i014p04741.

    Article  Google Scholar 

  42. BYERLEE J D. Friction of rocks [J]. Pure and Applied Geophysics, 1978, 116(4, 5): 615–626. DOI: https://doi.org/10.1007/BF00876528.

    Article  Google Scholar 

  43. GOETZE C. High temperature rheology of westerly granite [J]. Journal of Geophysics Research, 1971, 76(5): 1223–1230. DOI: https://doi.org/10.1029/JB076i005p01223.

    Article  Google Scholar 

  44. FU Xiao-fei, JIA Ru, WANG Hai-xue, WU Tong, MENG Ling-dong, SUN Yong-he. Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa Depression, Tarim Basin, NW China [J]. Petroleum Exploration and Development, 2015, 42(3): 300–309. DOI: https://doi.org/10.1016/S1876-3804(15)30023-9. (in Chinese)

    Article  Google Scholar 

  45. ZHAO Meng-jun, XIA Xin-yu, QIN Sheng-fei, SONG Yan, LIU Shao-bo, LIU Sheng, QIU Bin, YANG Zhi-lin. Gas source study of Ake well 1 resource in Tarim Basin [J]. Natural Gas Industry, 2003, 23(2): 31–33. DOI: https://doi.org/10.3321/j.issn:1000-0976.2003.02.008. (in Chinese)

    Google Scholar 

  46. LIU Sheng, WANG Dong-liang, WANG Zhao-ming, XIAO Zhong-rao, SU Xue-feng. Geochemical analyses on the natural gas formation of well Ak 1 in the Tarim Basin [J]. Petroleum Geology & Experiment, 2004, 26(3): 273–280. DOI: https://doi.org/10.11781/sysydz200403273. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-liang Wang  (王震亮).

Additional information

Foundation item: Project(41672121) supported by the National Natural Science Foundation of China; Project(D1438) supported by the China Geological Survey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Wang, Zl., Fan, Cy. et al. Quantitative characterization of sealing integrity by caprock of Paleocene Artashi Formation gypsolyte rock in Kashi Sag of Tarim Basin, NW China. J. Cent. South Univ. 26, 695–710 (2019). https://doi.org/10.1007/s11771-019-4040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4040-8

Key words

关键词

Navigation