Skip to main content
Log in

A novel estimation algorithm for torpedo tracking in undersea environment

海底环境下一个新的鱼雷跟踪问题的估计算法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel estimation algorithm is introduced to handle the popular undersea problem called torpedo tracking with angle-only measurements with a better approach compared to the existing filters. The new algorithm produces a better estimate from the outputs produced by the traditional nonlinear approaches with the assistance of simple noise minimizers like maximum likelihood filter or any other algorithm which belongs to their family. The introduced method is extended to the higher version in two ways. The first approach extracts a better estimate and covariance by enhancing the count of the intermediate filters, while the second approach accepts more inputs so as to attain improved performance without enhancement of the intermediate filter count. The ideal choice of the placement of towed array sensors to improve the performance of the proposed method further is suggested as the one where the line of sight and the towed array are perpendicular. The results could get even better by moving the ownship in the direction of reducing range. All the results are verified in the MATLAB environment.

摘要

本文介绍了一种新的估计算法,用于处理较为普遍的海底问题,即鱼雷跟踪问题。该方法仅使 用角度测量,与现有滤波器相比效果更好。借助简单的噪声优化法(如最大似然滤波法或其他相类似 的算法),新算法通过传统非线性方法产生的输出结果产生更好的估计值。引入的方法可以两种方式 扩展到更高版本。第一种方法通过增强中间滤波器的计数来提取更好的估计值和协方差,第二种方法 则是接受更多的输入以便在不增强中间滤波器计数的情况下获得性能的改进。进一步提取拖曳阵列传 感器位置以改善算法性能的方法是将瞄准线和拖曳阵列相垂直。通过将所有权转移到减少范围的方 向,结果可以变得更好。所有结果均在MATLAB中验证。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAVI KUMAR D V A N, KOTESWARA RAO S, PADMA RAJU K. A novel stochastic estimator using pre-processing technique for long range target tracking in heavy noise environment [J]. Optik, 2016, 127(10): 4520–4530. DOI: https://doi.org/10.1016/j.ijleo.2016.01.196.

    Article  Google Scholar 

  2. RAVI KUMAR D V A N, KOTESWARA RAO S, PADMA RAJU K. Integrated unscented Kalman filter for underwater passive target tracking with towed array measurements [J]. Optik, 2016, 127(5): 2840–2847. DOI: https://doi.org/10.1016/j.ijleo.2015.11.217.

    Article  Google Scholar 

  3. VIJAYA A, KOTESWARA RAO S, JAWAHAR A, KAR ISHMA B. Application of parameterized modified gain bearings-only extended Kalman filter for undersea tracking [J]. Indian Journal of Science and Technology, 2016, 9(13). 81630. DOI: https://doi.org/10.17485/ijst%2F2016%2Fv9i13%2F.

    Article  Google Scholar 

  4. RAVI KUMAR D V A N, KOTESWARA RAO S, PADMA RAJU K. Underwater bearings-only passive target tracking using estimate fusion technique [J]. Advances in Military Technology, 2015, 10(2): 31–44. DOI: http://aimt.unob.cz/articles/15_02/04.kumar.pdf.

    Google Scholar 

  5. DEOK J L. Nonlinear estimation and multiple sensor fusion using unscented information filtering [J]. Signal Processing Letters IEEE, 2008, 15: 861–864. DOI: https://doi.org/10.1109/LSP.2008.2005447.

    Article  Google Scholar 

  6. KALMAN R. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35–45. DOI: https://doi.org/10.1115/1.3662552.

    Article  Google Scholar 

  7. SONG T, SPEYER J. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements [J]. IEEE Trans Autom Control, 1985, 30(10): 940–949. DOI: https://doi.org/10.1109/TAC.1985.1103821.

    Article  MATH  Google Scholar 

  8. JULIER S, UHLMANN J. Unscented filtering and nonlinear estimation [J]. Proc IEEE, 2004, 92(3): 401–422. DOI: https://doi.org/10.1109/JPROC.2003.823141.

    Article  Google Scholar 

  9. LIU K Z, LI J, GUO W, ZHU P Q, WANG X H. Navigation system of a class of underwater vehicle based on adaptive unscented Kalman fiter algorithm [J]. Journal of Central South University, 2014, 21: 550–557. DOI: https://doi.org/10.1007/s11771-014-1973-9.

    Article  Google Scholar 

  10. ORTON M, MARRS A. Particle filters for tracking with out-of-sequence measurements [J]. IEEE Transactions on Aerosp Electron Syst, 2005, 41(2): 693–702. DOI: https://doi.org/10.1109/TAES.2005.1468758.

    Article  Google Scholar 

  11. CLOSAS P, BUGALLO M F. Improving accuracy by iterated multiple particle filtering [J]. Signal Processing Letters IEEE, 2012, 19(8): 531–534. DOI: https://doi.org/10.1109/LSP.2012.2205565.

    Article  Google Scholar 

  12. FERNANDEZ G. Track-before-detect labeled multi-bernoulli particle filter with label switching [J]. IEEE Transactions on Automatic Control, 2016, 52(5): 2123–2138. DOI: https://doi.org/10.1109/TAES.2016.150343.

    Google Scholar 

  13. YU Y J, COATES M J, RABBAT M G, BLOUIN S A. Distributed particle filter for Bearings-only tracking on spherical surfaces [J]. Signal Processing Letters, IEEE, 2016, 23(3): 326–330. DOI: https://doi.org/10.1109/LSP.2016.2518173.

    Article  Google Scholar 

  14. BEARD M, BA-TUONG V, BA-NGU V. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter [J]. Signal Processing Letters, IEEE, 2013, 20(4): 323–326. DOI: https://doi.org/10.1109/LSP.2013.2244594.

    Article  Google Scholar 

  15. WANG S, FENG J, TSE C K. Spherical simplex-radial cubature Kalman filter [J]. Signal Processing Letters IEEE, 2013, 21(1): 43–46. DOI: https://doi.org/10.1109/LSP.2013.2290381.

    Article  Google Scholar 

  16. ARASARATNAM I, HAYKIN S. Cubature Kalman filters [J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254–1269. DOI: https://doi.org/10.1109/TAC.2009.2019800.

    Article  MathSciNet  MATH  Google Scholar 

  17. WU H, CHEN S X, YANG B F, LUO X. Robust range-parameterized cubature Kalman filter for bearings-only tracking [J]. Journal of Central South University, 2016, 23(6): 1399–1405. DOI: https://doi.org/10.1007/s11771-016-3192-z.

    Article  Google Scholar 

  18. ARASARATNAM I, HAYKIN S, ELLIOTT R J. Discrete-time nonlinear filtering algorithms using gauss-hermite quadrature [J]. Proceedings of the IEEE, 2007, 95(5): 953–977. DOI: https://doi.org/10.1109/JPROC.2007.894705.

    Article  Google Scholar 

  19. GODAVARI T, UMADEVI J. Cloud computing based real-time vehicle tracking and speed monitoring system [J]. International Journal of Control Theory and Applications, 2016, 9(4): 1823–1830. DOI: http://www.serialsjournals.com/articles.php?volumesno_id=1037&journals_id=268&volumes_id=848

    Google Scholar 

  20. DWIVEDI P, BHALE P, BHATTACHARYYA A, PADHI R. Generalized estimation and predictive guidance for evasive targets [J]. IEEE Transactions on Automatic control, 2016, 52(5): 2111–2122. DOI: https://doi.org/10.1109/TAES.2016.140861.

    Google Scholar 

  21. KANT K, BATIA V, RJORA V. A novel robot navigation technique based on signal strength [J]. International journal of Control Theory and Applications, 2016, 9(41): 227–236. DOI: http://www.serialsjournals.com/articles.php?volumesno_id=1153&journals_id=268&volumes_id=848.

    Google Scholar 

  22. VERMA S, SINGH C, MITTAL S, ARORA P, REHALIA A. Mobile surveillance spheroid robot with static equilibrium camera, leaping mechanism and KLT algorithm based Detection with tracking [J]. International Journal of Control Theory and Applications, 2016, 9(41): 473–488. DOI: http://www.serialsjournals.com/articles.php?volumesno_id=1153&journals_id=268&volumes_id=848.

    Google Scholar 

  23. KARTHIKEYAN R, KAVIDA C. Motion tracking and segmentation in the compressed domain using spatio temporal Markov random fields [J]. International Journal of Control Theory and Applications, 2017, 10(1): 73–77. DOI: http://www.serialsjournals.com/articles.php?volumesno_id=1154&journals_id=268&volumes_id=1065.

    Google Scholar 

  24. JIAN L, LI X R. Tracking of extended object or target group using random matrix: new model and approach [J]. IEEE Transactions of Aerosp Electron Syst, 2016, 52(6): 2973–2989. DOI: https://doi.org/10.1109/TAES.2016.130346.

    Article  MathSciNet  Google Scholar 

  25. RAVI KUMAR D V A N, KOTESWARA RAO S, PADMA RAJU K. Under water active target tracking using kalman filter [J]. International Journal of Engineering Research and Technology, 2013, 2(10): 3982–3988. DOI: https://www.ijert.org/browse/volume-2-2013/october-2013-edition?start=580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. A. N. Ravi Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi Kumar, D.V.A.N., Koteswara Rao, S. & Padma Raju, K. A novel estimation algorithm for torpedo tracking in undersea environment. J. Cent. South Univ. 26, 673–683 (2019). https://doi.org/10.1007/s11771-019-4038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4038-2

Key words

关键词

Navigation