Skip to main content
Log in

Fast integrated guidance and control with global convergence

快速全局收敛的制导控制一体化设计

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.

摘要

本文提出一种全局快速收敛的制导控制一体化设计方法。利用干扰观测器对一体化模型中的不 确定性进行有限时间精确估计;基于多滑模面控制方法,在每一步提出独立的非奇异终端滑模函数, 且这些滑模面并行运行,从某时刻起滑模面保持零值,系统状态在滑动阶段快速收敛。因此,系统反 应速度提高。所设计的方法提供系统全局收敛时间的解析表达式,有利于优化系统的动态性能。仿真 结果验证了该方法的优越性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HE Shao-ming, LEE Chang-Hun. Optimality of error dynamics in missile guidance problems [J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1624–1633. DOI: https://doi.org/10.2514/1.G003343.

    Article  Google Scholar 

  2. YAN Han, WANG Xing-hu, YU Bing-feng, JI Hai-bo. Adaptive integrated guidance and control based on backstepping and input-to-state stability [J]. Asian Journal of Control, 2014, 16(2): 602–608. DOI: https://doi.org/10.1002/asjc.682.

    Article  MathSciNet  MATH  Google Scholar 

  3. LEVY M, SHIMA T, GUTMAN S. Single versus two-loop full-state guidance and control [J]. Journal of Guidance, Control, and Dynamics, 2017, 40(8): 1968–1977. DOI: https://doi.org/10.2514/1.G002722.

    Article  Google Scholar 

  4. MA Yi-wei, ZHANG Wei-hua. Differential geometric guidance command with finite time convergence using extended state observer [J]. Journal of Central South University, 2016, 23(4): 859–868. DOI: https://doi.org/10.1007/s11771-016-3133-x.

    Article  Google Scholar 

  5. ZAK M. Terminal attractors for addressable memory in neural networks [J]. Physics Letters A, 1988, 133(1): 18–22. DOI: https://doi.org/10.1016/0375-9601(88)90728-1.

    Article  MathSciNet  Google Scholar 

  6. ZHANG F, DUAN G R. Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment [J]. Control Theory & Applications, IET, 2012, 6(9): 1192–1204. DOI: https://doi.org/10.1049/iet-cta.2011.0413.

    Article  MathSciNet  Google Scholar 

  7. MAN Zhi-hong, YU Xing-huo. Terminal sliding mode control of MIMO linear systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(11): 1065–1070. DOI: https://doi.org/10.1109/81.641769.

    Article  MathSciNet  Google Scholar 

  8. SONG Hai-tao, ZHANG Tao. Fast robust integrated guidance and control design of interceptors [J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 349–356. DOI: https://doi.org/10.1109/TCST.2015.2431641.

    Article  Google Scholar 

  9. HE Shao-ming, SONG Tao, LIN De-fu. Impact angle constrained integrated guidance and control for maneuvering target interception [J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2653–2661. DOI: https://doi.org/10.2514/1.G002201.

    Article  Google Scholar 

  10. BAYRAMOGLU H, KOMURCUGIL H. Nonsingular decoupled terminal sliding-mode control for a class of fourth-order nonlinear systems [J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(9): 2527–2539. DOI: https://doi.org/10.1016/j.cnsns.2012.11.008.

    Article  MathSciNet  MATH  Google Scholar 

  11. BAYRAMOGLU H, KOMURCUGIL H. Time-varying sliding coefficient based terminal sliding mode control methods for a class of fourth-order nonlinear systems [J]. Nonlinear Dynamics, 2013, 73(3): 1645–1657. DOI: https://doi.org/10.1007/s11071-013-0892-x.

    Article  MathSciNet  MATH  Google Scholar 

  12. CHIU C S. Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems [J]. Automatica, 2012, 48(2): 316–326. DOI: https://doi.org/10.1016/j.automatica.2011.08.055.

    Article  MathSciNet  MATH  Google Scholar 

  13. FENG Yong, YU Xing-huo, HAN Feng-ling. On nonsingular terminal sliding-mode control of nonlinear systems [J]. Automatica, 2013, 49(6): 1715–1722. DOI: https://doi.org/10.1016/j.automatica.2013.01.051.

    Article  MathSciNet  MATH  Google Scholar 

  14. FENG Yong, YU Xing-huo, HAN Feng-ling. High-order terminal sliding-mode observer for parameter estimation of a permanent-magnet synchronous motor [J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4272–4280. DOI: https://doi.org/10.1109/TIE.2012.2213561.

    Article  Google Scholar 

  15. ZHUANG Kai-yu, SU Hong-ye, ZHANG Ke-qin, CHU Jian. Adaptive terminal sliding mode control for high-order nonlinear dynamic systems [J]. Journal of Zhejiang University Science, 2003, 4(1): 58–63. DOI: https://doi.org/10.1631/jzus.2003.0058.

    Article  Google Scholar 

  16. WANG Xiang-hua, WANG Jin-zhi. Partial integrated missile guidance and control with finite time convergence [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1399–1409. DOI: https://doi.org/10.2514/1.58983.

    Article  Google Scholar 

  17. WANG Xiang-hua, WANG Jin-zhi. Partial integrated guidance and control for missiles with three-dimensional impact angle constraints [J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 644–657. DOI: https://doi.org/10.2514/1.60133.

    Article  Google Scholar 

  18. WANG Xiang-hua, WANG Jin-zhi. Partial integrated guidance and control with impact angle constraints [J]. Journal of Guidance, Control, and Dynamics, 2015, 38(5): 925–936. DOI: https://doi.org/10.2514/1.G000141.

    Article  Google Scholar 

  19. ZHANG Cong, WU Yun-jie. Non-singular terminal dynamic surface control based integrated guidance and control design and simulation [J]. ISA Transactions, 2016, 63: 112–120. DOI: https://doi.org/10.1016/j.isatra.2016.03.013.

    Article  Google Scholar 

  20. SHIMA T, GOLAN O M. Exo-atmospheric guidance of an accelerating interceptor missile [J]. Journal of the Franklin Institute, 2012, 349(2): 622–637. DOI: https://doi.org/10.1016/j.jfranklin.2011.06.024.

    Article  MathSciNet  MATH  Google Scholar 

  21. SONG Hai-tao, ZHANG Tao, ZHANG Guo-liang, LU Chang-jie. Integrated interceptor guidance and control with prescribed performance [J]. International Journal of Robust and Nonlinear Control, 2015, 25(16): 3179–3194. DOI: https://doi.org/10.1002/mc.3260.

    Article  MathSciNet  MATH  Google Scholar 

  22. SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Smooth second-order sliding modes: Missile guidance application [J]. Automatica, 2007, 43(8): 1470–1476. DOI: https://doi.org/10.1016/j.automatica.2007.01.008.

    Article  MathSciNet  MATH  Google Scholar 

  23. YANG Jun, LI Shi-hua, SU Jin-ya, YU Xing-huo. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances [J]. Automatica, 2013, 49(7): 2287–2291. DOI: https://doi.org/10.1016/j.automatica.2013.03.026.

    Article  MathSciNet  MATH  Google Scholar 

  24. LEVANT A. Universal output-feedback SISO controllers [J]. Asian Journal of Control, 2003, 5(4): 484–497. DOI: https://doi.org/10.1111/j.1934-6093.2003.tb00166.x.

    Article  Google Scholar 

  25. HEDRICK J K, YIP P P. Multiple sliding surface control: Theory and application [J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(4): 586–593. DOI: https://doi.org/10.1115/1.1321268.

    Article  Google Scholar 

  26. SONG Hai-tao, ZHANG Tao, ZHANG Guo-liang. L1 adaptive state feedback controller for three-dimensional integrated guidance and control of interceptor [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(10): 1693–1701. DOI: https://doi.org/10.1177/0954410013506332.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-tao Song  (宋海涛).

Additional information

Foundation item: Project(61673386) supported by the National Natural Science Foundation of China; Project(2018QNJJ006) supported by the High-Tech Institute of Xi’an, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Ht., Zhang, T. Fast integrated guidance and control with global convergence. J. Cent. South Univ. 26, 632–639 (2019). https://doi.org/10.1007/s11771-019-4034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4034-6

Key words

关键词

Navigation