Skip to main content
Log in

Super long-range diffusion of carbon during proeutectoid ferrite transformation

先共析铁素体相变过程中碳的超长程扩散

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 µm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample (0.061%) is significantly higher than that of the bulk material (0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 µm/s.

摘要

为研究先共析铁素体相变过程中碳原子可能的扩散距离,在热模拟的真空环境下进行了低碳钢 的缓冷试验,分析了金相组织和热膨胀曲线,并测量了试样芯部的碳含量。观察金相组织发现试样的 表面获得了 450 pm厚的铁素体层,该铁素体层中不含珠光体。热膨胀曲线显示不含珠光体的铁素体 层形成于全局相变之前的局部相变过程中。试样芯部的碳含量(0.061%)显著高于基体材料的碳含量 (0.054%)。结果表明,碳从试样表层到试样芯部发生了超长程扩散。局部相变主要为界面控制模式, 界面迀移速率大约为2.25 (im/s。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ÅGREN J. Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels [J]. Acta Metallurgica, 1982, 30(4): 841–851

    Article  Google Scholar 

  2. ÅGREN J. A revised expression for the diffusivity of carbon in binary Fe-C austenite [J]. Scripta Metallurgica, 1986, 20(11): 1507–1510

    Article  Google Scholar 

  3. JIANG D, CARTER E A. Carbon dissolution and diffusion in ferrite and austenite from first principles [J]. Physical Review B, 2003, 67(21): 214103

    Article  Google Scholar 

  4. XIA Chang-qing, JIN Zhan-peng. Examination of carbon diffusion in niobium clad steel composite [J]. Journal of Central South University of Technology, 1999, 6(1): 1–3

    Article  Google Scholar 

  5. ZHANG Xing, TANG Jin-yuan, ZHANG Xue-rui. An optimized hardness model for carburizing-quenching of low carbon alloy steel [J]. Journal of Central South University, 2017, 24(1): 9–16

    Article  MathSciNet  Google Scholar 

  6. LIU Z K. Theoretic calculation of ferrite growth in supersaturated austenite in Fe-C alloy [J]. Acta Materialia, 1996, 44(9): 3855–3867

    Article  Google Scholar 

  7. BHADESHIA H, SVENSSON L E, GRETOFT B. A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits [J]. Acta Metallurgical, 1985, 33(7): 1271–1283

    Article  Google Scholar 

  8. ENOMOTO M. Prediction of TTT-diagram of proeutectoid ferrite reaction in iron-alloys from diffusion growth theory [J]. ISIJ International, 1992, 32(3): 297–305

    Article  Google Scholar 

  9. REED R, BHADESHIA H. Kinetics of reconstructive austenite to ferrite transformation in low alloy steels [J]. Materials Science and Technology, 1992, 8(5): 421–436

    Article  Google Scholar 

  10. VANDERMEER R. Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline Fe-C alloys [J]. Acta Metallurgica et Materialia, 1990, 38(12): 2461–2470

    Article  Google Scholar 

  11. YE Jian-song, CHANG Hong-bing, HSU T. Modeling for formation of proeutectoid ferrite in steel during continuous cooling [J]. Journal of Iron and Steel Research International, 2004, 11(6): 33–36

    Google Scholar 

  12. ZENER C. Theory of growth of spherical precipitates from solid solution [J]. Journal of Applied Physics, 1949, 20(10): 950–953

    Article  Google Scholar 

  13. CHRISTIAN J W. The theory of transformations in metals and alloys [M]. Oxford: Pergamon, 2002: 422–479.

    Book  Google Scholar 

  14. NOLFI F V, SHEWMON P G, FOSTER J S. Dissolution and growth kinetics of spherical precipitates [J]. Transactions of the Metallurgical Society of AIME, 1969, 245(7): 1427–1433

    Google Scholar 

  15. KRIELAART G, van der ZWAAG S. Simulations of pro-eutectoid ferrite formation using a mixed control growth model [J]. Materials Science and Engineering A, 1998, 246(1, 2): 104–116

    Article  Google Scholar 

  16. KRIELAART G P, SIETSMA J, van der ZWAAG S. Ferrite formation in Fe-C alloys during austenite decomposition under nonequilibrium interface conditions [J]. Materials Science and Engineering A, 1997, 237(2): 216–223

    Article  Google Scholar 

  17. KOP T, van LEEUWEN Y, SIETSMA J, van der ZWAAG S. Modelling the austenite to ferrite phase transformation in low carbon steels in terms of the interface mobility [J]. ISIJ International, 2000, 40(7): 713–718

    Article  Google Scholar 

  18. van LEEUWEN Y, KOP T, SIETSMA J, van der ZWAAG S. Phase transformations in low-carbon steels; modelling the kinetics in terms of the interface mobility [C]//3rd European Mechanics of Materials Conference on Mechanics and Multi-Physics Processes in Solids: Experiments, Modelling, Applications. 1999: 401–409. DOI: https://doi.org/10.1051/jp4:1999941.

    Google Scholar 

  19. van LEEUWEN Y, SIETSMA J, van der ZWAAG S. The influence of carbon diffusion on the character of the gamma-alpha phase transformation in steel [J]. ISIJ International, 2003, 43(5): 767–773

    Article  Google Scholar 

  20. van LEEUWEN Y, VOOIJS S, SIETSMA J, van der ZWAAG S. The effect of geometrical assumptions in modeling solid-state transformation kinetics [J]. Metallurgical and Materials Transactions A, 1998, 29(12): 2925–2931

    Article  Google Scholar 

  21. SIETSMA J, van der ZWAAG S. A concise model for mixed-mode phase transformations in the solid state [J]. Acta Materialia, 2004, 52(14): 4143–4152

    Article  Google Scholar 

  22. WU Rui-heng, RUAN Xue-yu, ZHANG Hong-bing, HSU T Y. A mixed-controll mechanism model of proeutectoid ferrite growth under non-equilibrium interface condition in Fe-C alloys [J]. Journal of Materials Science & Technology, 2004, 20(5): 561–566

    Article  Google Scholar 

  23. ONINK M, TICHELAAR F, BRAKMAN C, MITTEMEIJER E, van der ZWAAG S. An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites [J]. Journal of Materials Science, 1995, 30(24): 6223–6234

    Article  Google Scholar 

  24. MOSAYEBIDORCHEH S, RAHIMI-GORJI M, GANJI D D, MOAYEBIDORCHEH T, POURMEHRAN O, BIGLARIAN M. Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM [J]. Journal of Central South University, 2017, 24(3): 675–682

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. ZHANG Ai-wen, Dr. LIANG Xiao-jun and Dr. YUAN Xiang-qian for helpful discussions, Mr. SONG Guo-bin and Mr. MIAO Le-de for their support in experiment, research team under Dr. JIAO Si-hai for financing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suo-quan Zhang  (张所全).

Additional information

Foundation item: Project(16PJ1430200) supported by Shanghai Pujiang Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sq., Jiao, Sh., Ding, Jh. et al. Super long-range diffusion of carbon during proeutectoid ferrite transformation. J. Cent. South Univ. 26, 560–566 (2019). https://doi.org/10.1007/s11771-019-4027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4027-5

Key words

关键词

Navigation