Skip to main content
Log in

Temperature distribution and effect of low-density electric current on B2+O lamellar microstructure of Ti2AlNb alloy sheet during resistance heating

Ti2AlNb合金板材自阻加热中温度分布及低电流密度对B2+O层片组织的作用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The resistance heating method has been one of the prospective techniques for hot processing and welding techniques. The thermal behavior under different densities of electric current and the effect of electric current at temperature of 780 °C using low density of electric current of 6.70 A/mm2 on the B2+O lamellar microstructure were investigated for Ti2AlNb alloy sheet. The stable temperature denoted a balanced state between the Joule heat and the dissipation of heat including heat conduction, convection and radiation while the distribution of temperature was nonuniform. The highest temperatures of electric current heating samples increased as the density of electric current was elevated. In order to understand the specific effect of electric current on B2+O microstructure, heat treatment for microstructural homogeneity was introduced to this study. After that, according to the microstructural observations by common characterization techniques in the resistance-heating sample and the isothermal furnace-heating sample after homogenizing treatment, few significant differences in content and orientation of phases can be directly and explicitly found except the thermal effect from the applied electric current. The results will provide reference to this prospective forming and welding techniques and the application for Ti2AlNb alloys using resistance heating in the near future.

摘要

自阻加热技术是在热加工和焊接领域中具有潜力的加热方式。本文研究了不同电流密度下的 Ti2AlNb合金板材的自阻加热行为和在6.70 A/mm2低电流密度,最高温度为780 °C时,电流密度对 Ti2AlNb合金板材B2+O双相组织的作用。自阻加热时稳定的温度场意味着焦耳热和由热传导、热对 流和热辐射引起的耗散热量的一种平衡,而此时的板材温度分布不均匀。板材自阻加热时的最高温度 随着电流密度的提高而逐渐增加。为确切地研究电流对Ti2AlNb合金板材中B2+O相的作用,采用了 均匀化热处理。通过表征均匀化热处理后自阻加热试样和等温度下的炉温加热试样的组织发现,除了 电流直接带来的热效应,没有明确地发现0相、α2相和B2基体相的含量和取向上的差异。本研究可 以为Ti2AlNb合金板材在电流辅助热成形及焊接方面提供参考,为未来的Ti2AlNb合金的自阻加热应 用提供实验基础。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BANERJEE D, GOGIA A K, NANDI T K, JOSHI V A. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metallurgica, 1988, 36(4): 871–882. DOI: https://doi.org/10.1016/0001-6160(88)90141-1

    Article  Google Scholar 

  2. KUMPFERT J. Intermetallic alloys based on orthorhombic titanium aluminide [J]. Advanced Engineering Materials, 2001, 3(11): 851–864. DOI: https://doi.org/10.1002/1527-2648(200111)3:11<851::AID-ADEM851>3.0.CO;2-G

    Article  Google Scholar 

  3. WU Yong, LIU Gang, JIN Shou-yi, LIU Zhi-qiang. Microstructure and mechanical properties of Ti2AlNb cup-shaped part prepared by hot gas forming: Determining forming temperature, strain rate, and heat treatment [J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9): 4583–4594. DOI: https://doi.org/10.1007/s00170-017-0501-0

    Article  Google Scholar 

  4. DU Zhi-hao, JIANG Shao-song, ZHANG Kai-feng, LU Zhen, LI Bao-yong, ZHANG Da-lin. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure [J]. Materials & Design, 2016, 104: 242–250. DOI: https://doi.org/10.1016/j.matdes.2016.05.046

    Article  Google Scholar 

  5. QIN R, TANG G, GROMOV V. Manufacture of materials using external fields [J]. Materials Science and Technology, 2017, 33(12): 1397–1398. DOI: https://doi.org/10.1080/02670836.2017.1311068

    Article  Google Scholar 

  6. ZOU Hao, PAN Qing-lin, SHI Yun-jia, CHEN Jing, XIANG Hao, LI Rui-shi, LI Hang. Effect of ultrasonic field on microstructure and mechanical properties of as-cast 7085 aluminum alloy [J]. Journal of Central South University, 2018, 25(6): 1285–1294. DOI: https://doi.org/10.1007/s11771-018-3825-5

    Article  Google Scholar 

  7. MORI K, MAENO T, YAMADA H, MATSUMOTO T. 1-Shot hot stamping of ultra-high strength steel parts consisting of resistance heating, forming, shearing and die quenching [J]. International Journal of Machine Tools and Manufacture, 2015, 89: 124–131. DOI: https://doi.org/10.1016/j.ijmachtools.2014.10.008

    Article  Google Scholar 

  8. MAENO T, MORI K, ADACHI K. Gas forming of ultra-high strength steel hollow part using air filled into sealed tube and resistance heating [J]. Journal of Materials Processing Technology, 2014, 214(1): 97–105. DOI: https://doi.org/10.1016/j.jmatprotec.2013.08.004

    Article  Google Scholar 

  9. YANG Jian-lei, WANG Guo-feng, Li Xiao, WU Xue-song. Current auxiliary hot-stamping of advanced high-strength steel and experimental evaluation [J]. Materials Science and Technology, 2017, 33(3): 355–362. DOI: https://doi.org/10.1080/02670836.2016.1210298

    Article  Google Scholar 

  10. TROITSKII O A. Electroplastic deformation of metal [J]. Strength of Materials, 1976, 8(12): 1466–1471. DOI: https://doi.org/10.1007/BF01528360

    Article  Google Scholar 

  11. KUANG Jie, LI Xiao-hui, ZHANG Rui-kun, YE Yong-da, LUO A A, TANG Guo-yi. Enhanced rollability of Mg-3Al-lZn alloy by pulsed electric current: A comparative study [J]. Materials & Design, 2016, 100: 204–216. DOI: https://doi.org/10.1016/j.matdes.2016.03.126

    Article  Google Scholar 

  12. KUANG Jie, LI Xiao-hui, YE Xiao-xin, TANG Jian-guo, LIU Hai-feng, WANG J, TANG Guo-yi. Microstructure and texture evolution of magnesium alloys during electropulse treatment [J]. Metallurgical & Materials Transactions A, 2015, 46(4): 1789–1804. DOI: https://doi.org/10.1007/s11661-014-2735-x

    Article  Google Scholar 

  13. ZHU R, TANG Guo-yi. The improved plasticity of NiTi alloy via electropulsing in rolling [J]. Materials Science and Technology, 2017, 33(5): 546–551. DOI: https://doi.org/10.1080/02670836.2016.1231745

    Article  Google Scholar 

  14. XIE Huan-yang, WANG Qian, PENG Fang, LIU Kai, DONG Xiang-huai, WANG Jian-feng. Electroplastic effect in AZ31B magnesium alloy sheet through uniaxial tensile tests [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2686–2692. DOI: https://doi.org/10.1016/S1003-6326(15)63892-4

    Article  Google Scholar 

  15. BOEHLERT C J, MAJUMDAR B S, SEETHARAMAN V, MIRACLE D B. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metallurgical & Materials Transactions A, 1999, 30(9): 2305–2323. DOI: https://doi.org/10.1007/s11661-999-0240-4

    Article  Google Scholar 

  16. ZHANG Shang-zhou, LIU Zi-quan, WANG Guang-dong, CHEN Li-qing, LIU Xiang-hua, YANG Rui. Microstructural evolution during aging of Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Journal of Central South University of Technology, 2009, 16(3): 354–359. DOI: https://doi.org/10.1007/s11771-009-0060-0

    Article  Google Scholar 

  17. WANG Wei, ZENG Wei-dong, XUE Chen, LIANG Xiao-bo, ZHANG Jian-wei. Designed bimodal size lamellar O microstructures in Ti2AlNb based alloy: Microstructural evolution, tensile and creep properties [J]. Materials Science and Engineering A, 2014, 618: 288–294. DOI: https://doi.org/10.1016/j.msea.2014.09.035

    Article  Google Scholar 

  18. XUE Chen, ZENG Wei-dong, WANG Wei, LIANG Xiao-bo, ZHANG Jian-wei. Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti-22Al-25Nb alloy [J]. Materials Science and Engineering A, 2014, 611: 320–325. DOI: https://doi.org/10.1016/j.msea.2014.05.076

    Article  Google Scholar 

  19. SHAO Bin, ZONG Ying-ying, WEN Dao-sheng, TIAN Ying-tao, SHAN De-bin. Investigation of the phase transformations in Ti22Al25Nb alloy [J]. Materials Characterization, 2016, 114: 75–78. DOI: https://doi.org/10.1016/j.matchar.2016.02.011

    Article  Google Scholar 

  20. TANG D W, ZHOU B L, CAO H, HE G H. Dynamic thermal expansion under transient laser-pulse heating [J]. Applied Physics Letters, 1991, 59(24): 3113–3114. DOI: https://doi.org/10.1063/1.105755

    Article  Google Scholar 

  21. BANERJEE D. The intermetallic Ti2AlNb [J]. Progress in Materials Science, 1997, 42(1): 135–158. DOI: https://doi.org/10.1016/S0079-6425(97)00012-1

    Article  MathSciNet  Google Scholar 

  22. WANG Wei, ZENG Wei-dong, LI Dong, ZHU Bin, ZHENG You-ping, LIANG Xiao-bo. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α 2-phase decomposition [J]. Materials Science and Engineering A, 2016, 662: 120–128. DOI: https://doi.org/10.1016/j.msea.2016.03.058

    Article  Google Scholar 

  23. MURALEEDHARAN K, BANERJEE D, BANERJEE S, LELE S. The α 2-to-O transformation in Ti-Al-Nb alloys [J]. Philosophical Magazine A, 1995, 71(5): 1011–1036. DOI: https://doi.org/10.1080/01418619508236234.

    Article  Google Scholar 

  24. DOLINSKY Y, ELPERIN T. Thermodynamics of nucleation in current-carrying conductors [J]. Physical Review B: Condensed Matter, 1994, 50(1): 52–58. DOI: https://doi.org/10.1103/PhysRevB.50.52

    Article  Google Scholar 

  25. QIN Rong-shan, ZHOU Ben-lian. Effect of electric current pulses on grain size in castings [J]. International Journal of Non-Equilibrium Processing, 1998, 11(1): 77–86. http://ir.imr.ac.cn/handle/321006/37755

    Google Scholar 

  26. GUO J D, WANG X L, DAI W B. Microstructure evolution in metals induced by high density electric current pulses [J]. Materials Science and Technology A, 2015, 31(13): 1545–1554. DOI: https://doi.org/10.1179/1743284715Y.0000000001

    Article  Google Scholar 

  27. WANG X L, WANG Y B, WANG Y M, WANG B Q, GUO J D. Oriented nanotwins induced by electric current pulses in Cu-Zn alloy [J]. Applied Physics Letters, 2007, 91(16): 684. DOI: https://doi.org/10.1063/1.2800790

    Google Scholar 

  28. QIN Rong-shan. Critical assessment 8: Outstanding issues in electropulsing processing [J]. Materials Science and Technology, 2014, 31(2): 203–206. DOI: https://doi.org/10.1179/1743284714Y.0000000630

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-feng Wang  (王国峰).

Additional information

Foundation item: Project(51875122) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Gf., Li, X., Li, Df. et al. Temperature distribution and effect of low-density electric current on B2+O lamellar microstructure of Ti2AlNb alloy sheet during resistance heating. J. Cent. South Univ. 26, 550–559 (2019). https://doi.org/10.1007/s11771-019-4026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4026-6

Key words

关键词

Navigation