Skip to main content
Log in

Finite element modeling of convective pore-fluid flow in fluid-saturated porous rocks within upper crust: An overview

上地壳内饱水孔隙岩石中孔隙流体对流的有限元模拟综述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.

摘要

孔隙流体对流在生成地下深部矿产资源和油田过程中起着关键作用。 因此, 为了探测新的地下深部矿产资源和油田, 非常有必要对驱动和控制饱水孔隙岩石中孔隙流体对流的热动力过程进行理论分析和数值模拟。 根据科学的观点, 上地壳内孔隙流体对流问题可被归结为一类发生在饱水孔隙介质中的热动力非稳定性问题。 处理这类科学问题的关键点在于如何评价所考虑的热动力系统是否处于超临界状态。 为了克服采用理论分析和实验方法在求解上地壳内孔隙流体对流问题时的局限性, 有限元模拟方法已在过去二十多年中发展成为广泛使用的一种有效方法。 本文的主要目的是对采用有限元模拟方法求解上地壳内孔隙流体对流问题的发展过程及应用进行综述。 所考虑的应用主要涉及采用有限元模拟方法求解具有复杂几何构形和介质材料分布的大尺度地质系统中孔隙流体对流问题。 尤其重要的是, 本文详细地介绍了两种常用的有限元数值模拟方法, 即稳态方法和瞬态方法, 并对它们在模拟上地壳内孔隙流体对流问题时的优缺点进行了讨论。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HOBBS B E, ZHANG Y, ORD A, ZHAO C. Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration [J]. Journal of Geochemical Exploration, 2000, 69: 505–509

    Article  Google Scholar 

  2. GOW P, UPTON P, ZHAO C, HILL K. Copper-gold mineralization in the New Guinea: Numerical modeling of collision, fluid flow and intrusion-related hydrothermal systems [J]. Australian Journal of Earth Sciences, 2002, 49(4): 753–771

    Article  Google Scholar 

  3. ORD A, HOBBS B E, ZHANG Y, BROADBENT G C, BROWN M, WILLETTS G, SORJONEN-WARD P, WALSHE J, ZHAO C. Geodynamic modelling of the Century deposit, Mt Isa Province, Queensland [J]. Australian Journal of Earth Sciences, 2002, 49(6): 1011–1039

    Article  Google Scholar 

  4. SCHAUBS P, ZHAO C. Numerical modelling of gold-deposit formation in the Bendigo-Ballarat zone, Victoria [J]. Australian Journal of Earth Sciences, 2002, 49(6): 1077–1096

    Article  Google Scholar 

  5. SORJONEN-WARD P, ZHANG Y, ZHAO C. Numerical modelling of orogenic processes and mineralization in the south eastern part of the Yilgarn Craton, Western Australia [J]. Australian Journal of Earth Sciences, 2002, 49(6): 935–964

    Article  Google Scholar 

  6. HARCOUET-MENOU V, GUILLOU-FROTTIER L, BONNEVILLE A, ADLER P M, MOURZENKO V. Hydrothermal convection in and around mineralized fault zones: Insights from two- and three-dimensional numerical modeling applied to the Ashanti belt, Ghana [J]. Geofluids, 2009, 9(2): 116–137

    Article  Google Scholar 

  7. JU M, DAI T, YANG J. Finite element modeling of pore-fluid flow in the Dachang ore district, Guangxi, China: Implications for hydrothermal mineralization [J]. Geoscience Frontiers, 2011, 2(3): 463–474

    Article  Google Scholar 

  8. NIELD D A, BEJAN A. Convection in porous media [M]. New York: Springer-Verlag, 1992: 356.

    Book  Google Scholar 

  9. ZHAO C, HOBBS B E, ORD A. Convective and advective heat transfer in geological systems [M]. Berlin: Springer, 2008: 255.

    MATH  Google Scholar 

  10. LAPWOOD E R. Convection of a fluid in a porous medium [J]. Proceedings of the Cambridge Philosophical Society, 1948, 44(4): 508–521

    Article  MathSciNet  MATH  Google Scholar 

  11. HORTON C W, ROGERS F T. Convection currents in a porous medium [J]. Journal of Applied Physics, 1945, 16(6): 367–370

    Article  MathSciNet  MATH  Google Scholar 

  12. TURCOTTE D L, SCHUBERT G. Geodynamics: Applications of continuum physics to geological problems [M]. New York: John Wiley & Sons, 1982.

    Google Scholar 

  13. GASSER R D, KAZIMI M S. Onset of convection in a porous medium with internal heat generation [J]. ASME Journal of Heat Transfer, 1976, 98(1): 49–54

    Article  Google Scholar 

  14. HORNE R N, CALTAGIRONE J P. On the evaluation of thermal disturbances during natural convection in a porous medium [J]. Journal of Fluid Mechanics, 1980, 100(2): 385–395

    Article  MATH  Google Scholar 

  15. BAU H H, TORRANCE K E. Low Rayleigh number thermal convection in a vertical cylinder filled with porous materials and heated from below [J]. ASME Journal of Heat Transfer, 1982, 104(1): 166–172

    Article  Google Scholar 

  16. KAVIANY M. Thermal convective instabilities in a porous medium [J]. ASME Journal of Heat Transfer, 1984, 106(1): 137–142

    Article  Google Scholar 

  17. CALTAGIRONE J P, BORIES S. Solutions and stability criteria of natural convective flow in an inclined porous layer [J]. Journal of Fluid Mechanics, 1985, 155: 267–287

    Article  MATH  Google Scholar 

  18. LEBON G, CLOOT A. A thermodynamical modeling of fluid flows through porous media: Application to natural convection [J]. International Journal of Heat and Mass Transfer, 1986, 29(3): 381–390

    Article  MATH  Google Scholar 

  19. PILLATSIS G, TASLIM M E, NARUSAWA U. Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers [J]. ASME Journal of Heat Transfer, 1987, 109(3): 677–682

    Article  Google Scholar 

  20. BJORLYKKE K, MO A, PALM E. Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions [J]. Marine and Petroleum Geology, 1988, 5(4): 338–351

    Article  Google Scholar 

  21. ALAVYOON F. On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries [J]. International Journal of Heat and Mass Transfer, 1993, 36(10): 2479–2498

    Article  MATH  Google Scholar 

  22. CHEVALIER S, BERNARD D, JOLY N. Natural convection in a porous layer bounded by impervious domains: From numerical approaches to experimental realization [J]. International Journal of Heat and Mass Transfer, 1999, 42(4): 581–597

    Article  MATH  Google Scholar 

  23. TOURNIER C, GENTHON P, RABINOWICZ M. The onset of natural convection in vertical fault planes: Consequences for the thermal regime in crystalline basements and for heat recovery experiments [J]. Geophysical Journal International, 2000, 140(3): 500–508

    Article  Google Scholar 

  24. LIN G, HOBBS B E, ORD A, MUHLHAUS H B. Theoretical and numerical analyses of convective instability in porous media with temperature-dependent viscosity [J]. Communications in Numerical Methods in Engineering, 2003, 19(10): 787–799

    Article  MATH  Google Scholar 

  25. PHILLIPS O M. Flow and reactions in permeable rocks [M]. Cambridge: Cambridge University Press, 1991: 286.

  26. RAFFENSPERGER J P, GARVEN G. The formation of unconformity-type uranium ore deposits: Coupled hydrochemical modeling [J]. American Journal of Science, 1995, 295(6): 639–696

    Article  Google Scholar 

  27. ZHAO C, MUHLHAUS H B, HOBBS B E. Finite element analysis of steady-state natural convection problems in fluid-saturated porous media heated from below [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(12): 863–881

    Article  Google Scholar 

  28. ORD A, PENG S, MUHLHAUS H B, LIU L. Theoretical investigation of convective instability in inclined and fluid-saturated three-dimensional fault zones [J]. Tectonophysics, 2004, 387(1–4): 47–64

    Google Scholar 

  29. HORNBY P, ORD A, PENG S. Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks [J]. International Journal for Numerical Methods in Engineering, 2006, 66(7): 1061–1078

    Article  MATH  Google Scholar 

  30. SCHAFER D, SCHAFER W, KINZELBACH W. Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model [J]. Journal of Contaminant Hydrology, 1998, 31(1, 2): 167–186

    Article  Google Scholar 

  31. YANG J W. Full 3D numerical simulation of hydrothermal fluid flow in faulted sedimentary basins: Example of the Mcarthur basin, northern Australia [J]. Journal of Geochemical Exploration, 2006, 89(1–3): 440–444

    Article  Google Scholar 

  32. YANG J W, FENG Z, LUO X, CHEN Y. Three-dimensional numerical modeling of salinity variations in driving basin-scale ore-forming fluid flow: Example from Mount Isa Basin, northern Australia [J]. Journal of Geochemical Exploration, 2010, 106(1–3): 236–243

    Article  Google Scholar 

  33. YANG J W, LARGE R, BULL S, SCOTT D. Basin-scale numerical modelling to test the role of buoyancy driven fluid flow and heat transport in the formation of stratiform Zn-Pb-Ag deposits in the northern Mt Isa basin [J]. Economic Geology, 2006, 101(6): 1275–1292

    Article  Google Scholar 

  34. PALUSZNY A, MATTHAI S K, HOHMEYER M. Hybrid finite element–finite volume discretization of complex geologic structures and a new simulation workflow demonstrated on fractured rocks [J]. Geofluids, 2007, 7(2): 186–208

    Article  Google Scholar 

  35. ALT-EPPING P, ZHAO C. Reactive mass transport modeling of a three-dimensional vertical fault zone with a finger-like convective flow regime [J]. Journal of Geochemical Exploration, 2010, 106(1–3): 8–23

    Article  Google Scholar 

  36. ZHAO C, HOBBS B E, ORD A. Investigating dynamic mechanisms of geological phenomena using methodology of computational geosciences: An example of equal-distant mineralization in a fault [J]. Science in China Series D: Earth Sciences, 2008, 51(7): 947–954

    Article  Google Scholar 

  37. ZHAO C, HOBBS B E, ORD A. Fundamentals of computational geoscience: Numerical methods and algorithms [M]. Berlin: Springer, 2009: 285.

    MATH  Google Scholar 

  38. DIERSCH H J G. FEFLOW Reference manual [M]. Berlin: Wasy GmbH, 2002: 225.

    Google Scholar 

  39. ZHAO C, REID L B, REGENAUER-LIEB K. Some fundamental issues in computational hydrodynamics of mineralization: A review [J]. Journal of Geochemical Exploration, 2012, 112: 21–34

    Article  Google Scholar 

  40. ZIENKIEWICZ O C. The finite element method [M]. London: McGraw-Hill, 1977: 586.

    Google Scholar 

  41. KUHN M, DOBERTB F, GESSNER K. Numerical investigation of the effect of heterogeneous permeability distributions on free convection in the hydrothermal system at Mount Isa, Australia [J]. Earth and Planetary Science Letters, 2006, 244(3, 4): 655–671

    Article  Google Scholar 

  42. ZHAO C, HOBBS B E, ORD A. Modeling of mountain topography effects on hydrothermal Pb-Zn mineralization patterns: Generic model approach [J]. Journal of Geochemical Exploration, 2018, 190: 400–410

    Article  Google Scholar 

  43. SCHAUBS P, HOBBS B E. Acquisition of spatially-distributed geochemical data in geoinformatics: Computational simulation approach [J]. Journal of Geochemical Exploration, 2016, 164: 18–27

    Article  Google Scholar 

  44. ZHAO C, SCHAUBS P, HOBBS B E. Computational simulation of seepage instability problems in fluid-saturated porous rocks: Potential dynamic mechanisms for controlling mineralization patterns [J]. Ore Geology Reviews, 2016, 79: 180–188

    Article  Google Scholar 

  45. MALKOVSKY V I, PEK A A. Onset of fault-bounded free thermal convection in a fluid-saturated horizontal permeable porous layer [J]. Transport in Porous Media, 2015, 110(1): 25–39

    Article  MathSciNet  Google Scholar 

  46. VUJEVIC K, GRAF T. Combined inter- and intra-fracture free convection in fracture networks embedded in a low-permeability matrix [J]. Advances in Water Resources, 2015, 84: 52–63

    Article  Google Scholar 

  47. PEK A A, MALKOVSKY V I. Linked thermal convection of the basement and basinal fluids in formation of the unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada [J]. Geofluids, 2016, 16(5): 925–940

    Article  Google Scholar 

  48. ZHAO C. Advances in numerical algorithms and methods in computational geosciences with modeling characteristics of multiple physical and chemical processes [J]. Science China Technological Sciences, 2015, 58(5): 783–795

    Article  Google Scholar 

  49. ZHAO C, HOBBS B, ORD A. A new alternative approach for investigating acidization dissolution front propagation in fluid-saturated rocks [J]. Science China Technological Sciences, 2017, 60(8): 1197–1210

    Article  Google Scholar 

  50. ZHAO C, SCHAUBS P, HOBBS B. Effects of porosity heterogeneity on chemical dissolution-front instability in fluid-saturated rocks [J]. Journal of Central South University, 2017, 24(3): 720–725

    Article  Google Scholar 

  51. ZHAO C, HOBBS B, ORD A. A unified theory for sharp dissolution front propagation in chemical dissolution of fluid-saturated porous rocks [J]. Science China Technological Sciences, 2019, 62(1): 163–174

    Article  Google Scholar 

  52. ZHAO C, HOBBS B, ORD A. Effects of different numerical algorithms on simulation of chemical dissolution-front instability in fluid-saturated porous rocks [J]. Journal of Central South University, 2018, 25(8): 1966–1975

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-bin Zhao  (赵崇斌).

Additional information

Foundation item: Project(11272359) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Cb., Hobbs, B. & Ord, A. Finite element modeling of convective pore-fluid flow in fluid-saturated porous rocks within upper crust: An overview. J. Cent. South Univ. 26, 501–514 (2019). https://doi.org/10.1007/s11771-019-4022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4022-x

Key words

关键词

Navigation