Skip to main content
Log in

Removal of SO2 from flue gas using Bayer red mud: Influence factors and mechanism

拜尔法赤泥用于烟气脱硫:影响因素与机理

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas. Effects of the ratio of liquid to solid (L/S), the absorption temperature, the inlet SO2 concentration, the O2 concentration, SO42- and other different components of Bayer red mud on desulfurization were conducted. The mechanism of flue gas desulfurization was also established. The results indicated that L/S was the prominent factor, followed by the inlet SO2 concentration and the temperature was the least among them. The optimum condition was as follows: L/S, the temperature and the SO2 concentration were 20:1, 25 °C and 1000 mg/m3, respectively, under the gas flow of 1.5 L/min. The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%. The accumulation of SO42- inhibited the desulfurization efficiency. The alkali absorption and metal ions liquid catalytic oxidation were involved in the process, which accounted for 98.61%.

摘要

本文研究了由拜尔法赤泥与水制备吸收剂并应用于烟气脱硫。研究了固液比、吸收温度、入口 SO2 浓度、O2 含量、SO42-和拜尔赤泥中其他组分对烟气脱硫的影响,建立了烟气脱硫的机制。结果表 明这些因素中固液比是最主要的因素,随后是入口SO2 浓度,温度的影响最小。当气体流量为1.5 L/min 时,最佳的反应条件为:液固比20:1,吸收温度25 °C,入口SO2 浓度1000 mg/m3。当O2 含量高于 7%后,O2 含量对脱硫效率的影响较小。SO42-的累积抑制了脱硫效率。碱液吸收、液相催化氧化共占 据脱硫进程中总贡献的98.61%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAGHUNATH C V, MONDAL M K. Experimental scale multi component absorption of SO2 and NO by NH3/NaClO scrubbing [J]. Chemical Engineering Journal, 2017, 314: 537–547. DOI: 10.1016/j.cej.2016.12.011.

    Article  Google Scholar 

  2. YU Qing-chun, DENG Yong, WANG Fei, FENG Yue-bin, YANG Bin, XU Bao, LIU Da. Comparison of desulfurization kinetics of copper oxide sorbent [J]. Journal of Central South University, 2015, 22: 2902–2908. DOI: 10.1007/s11771-015-2824-z.

    Article  Google Scholar 

  3. WU Xue, WU Kai, ZHANG Yong, HONG Qiao, ZHENG Cheng, GAO Xiang, CEN Ke. Comparative life cycle assessment and economic analysis of typical flue-gas cleaning processes of coal-fired power plants in China [J]. Journal of Cleaner Production, 2017, 142: 3236–3242. DOI: 10.1016/j.jclepro.2016.10.146.

    Article  Google Scholar 

  4. LIU Wan, CHEN Xiang, LI Wang, YU Yan, YAN Kun. Environmental assessment, management and utilization of red mud in China [J]. Journal of Cleaner Production, 2014, 84: 606–610. DOI: 10.1016/j.jclepro.2014. 06.080.

    Article  Google Scholar 

  5. XUE Sheng-guo, WU Yu-jun, LI Yi-wei, KONG Xiang-feng, ZHU Feng, WILLIAM Hartley, LI Xiao-fei, YE Yu-zhen. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  6. ZHU Feng, HOU Jing, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation and Development, 2017, 28(7): 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  7. YANG Wei, HUSSAIN A, ZHANG Jun, LIU Yang. Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent [J]. Chemical Engineering Journal, 2018, 341: 483–494. DOI: 10.1016/j.cej.2018.02.023.

    Article  Google Scholar 

  8. WANG Meng, HU Hui, LIU Jin, CHEN Qi. Negative effect of dissolved organic compounds on settling behavior of synthetic monominerals in red mud [J]. Journal of Central South University, 2016, 23(7): 1591–1602. DOI: 10.1016/S1003-6326(17)60049-9.

    Article  Google Scholar 

  9. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing, WU Hao, RAJENDRAN M, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: the potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  10. KONG Xiang-feng, JIANG Xing-xing, XUE Sheng-guo, HUANG Ling, HARTLEY W, WU Chuan, LI Xiao-bin. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  11. KONG Xiang-feng, TIAN Tao, XUE Sheng-guo, HARTLEY W, HUANG Long, WU Chuan, LI Chu. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation and Development, 2018, 29(1): 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  12. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, HARTLEY W. A review of the characterization and revegetation of bauxite residues (Red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132. DOI: 10.1007/s11356-015–4558-8.

    Article  Google Scholar 

  13. XUE Sheng-guo, YE Yu, ZHU Feng, WANG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  14. XUE Sheng-guo, LI Meng, JIANG Jun, MILLAR G J, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  15. ZHU Feng, ZHOU Jia, XUE Sheng-guo, HARTLEY W, WU Chuan, GUO Ying. Aging of bauxite residue in association of regeneration: A comparison of methods to determine aggregate stability & erosion resistance [J]. Ecological Engineering, 2016, 92: 47–54. DOI: 10.1016/j.ecoleng.2016.03.025.

    Article  Google Scholar 

  16. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  17. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.

    Article  Google Scholar 

  18. HAMID S, BAE S, LEE W. Novel bimetallic catalyst supported by red mud for enhanced nitrate reduction [J]. Chemical Engineering Journal, 2018, 348: 877–887. DOI: 10.1016/j.cej.2018.05.016.

    Article  Google Scholar 

  19. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, LI Yi-wei. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822–34. DOI: 10.1007/s11356-016-6478-7.

    Article  Google Scholar 

  20. ELISABETTA F, ANTONIO L, MURA G. Sulfur dioxide absorption in a bubbling reactor with suspensions of Bayer red mud [J]. Journal of Industrial and Engineering Chemistry, 2007, 46: 6770–6776. DOI: 10.1021/ie0616904.

    Article  Google Scholar 

  21. ZHOU Yang, LI Cai, FAN Chun, FU Meng, TAO Li, YU Min, ZHANG Meng. Wet removal of sulfur dioxide and nitrogen oxides from simulated flue gas by Ca(ClO)2 solution [J]. Environmental Progress & Sustainable Energy, 2015, 34(6): 1586–1595. DOI: 10.1002/ep.12153.

    Article  Google Scholar 

  22. LIU Hong, HUANG Tian, JIANG Xia, JIANG Wen. Preparation and desulfurization performance of pyrolusite modified activated coke [J]. Environmental Progress & Sustainable Energy, 2016, 35(6): 1679–1686. DOI: 10.1002/ep.12416.

    Article  Google Scholar 

  23. KARAGOZ O, COPUR M, KOCAKERIM M M. Kinetic analysis of retention of SO2 using waste ulexite ore in an aqueous medium [J]. Journal of Hazardous Materials, 2018, 353: 214–226. DOI: 10.1016/j.jhazmat.2018.04.006.

    Article  Google Scholar 

  24. KONG Ling, ZOU Si, MEI Jian, GENG Yang, ZHAO Hui, YANG Shi. Outstanding resistance of H2S-Modified Cu/TiO2 to SO2 for capturing gaseous Hg(0) from nonferrous metal smelting flue gas: Performance and reaction mechanism [J]. Environmental Science & Technology, 2018, 52(17): 10003–10010. DOI: 10.1021/acs. est.8b03484.

    Article  Google Scholar 

  25. GIL A F, SALGADO L, GALICIA L, GONZ L I. Predominance-zone diagrams of Fe(III) and Fe(II) sulfate complexes in acidic media. Voltammetric and spectrophotometric studies [J]. Talanta, 1995, 42(3): 407–414. DOI: 10.1016/0039-9140(95)01424-A.

    Google Scholar 

  26. ROKNI E, LEVENDIS Y A. Utilization of a high-alkali lignite coal ash for SO2 capture in power generation [J]. Journal of Energy Engineering, 2017, 143(4): 04016067. DOI: 10.1061/(ASCE)EY.1943-7897.0000423.

    Article  Google Scholar 

  27. PANG Hao, LI Xue, JIN Su, WEI Peng, LI Hui. Analysis of alumina red mud wet flue gas desulfurization (FGD) technology [J]. Advanced Materials Research, 2013, 634–638: 198–203. DOI: 10.4028/www. scientific.net/AMR.634-638.198.

    Article  Google Scholar 

  28. ZHAO Ling, LI Cai, ZHANG Jie, ZHANG Xu, ZHAN Fu, MA Jin, XIE Yin, ZENG Guang. Promotional effect of CeO2 modified support on V2O5–WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas [J]. Fuel, 2015, 153: 361–369. DOI: 10.1016/j.fuel.2015.03.001.

    Article  Google Scholar 

  29. YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Applied Surface Science, 2008, 254(8): 2441–2449. DOI: 10.1016/j.apsusc.2007. 09.063.

    Article  Google Scholar 

  30. HAO Run, ZHANG Yao, WANG Zhao, LI Yuan, YUAN Bo, MAO Xing, ZHAO Yi. An advanced wet method for simultaneous removal of SO2 and NO from coal-fired flue gas by utilizing a complex absorbent [J]. Chemical Engineering Journal, 2017, 307: 562–571. DOI: 10.1016/j.cej.2016.08.103.

    Article  Google Scholar 

  31. DEIHIMI N, IRANNAJAD M, REZAI B. Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal [J]. Journal of Environmental Management, 2018, 206: 266–275. DOI: 10.1016/j.jenvman.2017.10.037.

    Article  Google Scholar 

  32. MASTALERZ M, HE Li, MELNICHENKO Y B, RUPP J A. Porosity of coal and shale: insights from gas adsorption and SANS/USANS techniques [J]. Energy & Fuels, 2012, 26(8): 5109–5120. DOI: 10.1021/ef300735t.

    Article  Google Scholar 

  33. CHEN Min, DENG Xian, HE Fei. Removal of SO2 from flue gas using basic aluminum sulfate solution with the byproduct oxidation inhibition by ethylene glycol [J]. Energy & Fuels, 2016, 30: 1183–1191. DOI: 10.1021/acs. energyfuels.5b02411.

    Google Scholar 

  34. BAHRABADI-JOVEIN I, SEDDIGHI S, BASHTANI J. Sulfur dioxide removal using hydrogen peroxide in sodiumand calcium-based absorbers [J]. Energy & Fuels, 2017, 31(12): 14007–14017. DOI: 10.1021/acs.energyfuels. 7b02722.

    Article  Google Scholar 

  35. SUN Pei-shi, NING Ping, SONG Wen-biao. Liquid-phase catalytic oxidation of smelting-gases containing SO2 in low concentration [J]. Journal of Cleaner Production, 1998, 6: 323–327. DOI: 10.1016/s0959-6526(98)00020-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li  (李彬).

Additional information

Foundation item: Project(2017YFC0210500) supported by the National Key Technology R&D Program of China; Project(2017ACA092) supported by the Major Projects of Technical Innovation in Hubei Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Wu, H., Wang, J. et al. Removal of SO2 from flue gas using Bayer red mud: Influence factors and mechanism. J. Cent. South Univ. 26, 467–478 (2019). https://doi.org/10.1007/s11771-019-4019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4019-5

Key words

关键词

Navigation