Skip to main content
Log in

Synergistic coagulation of bauxite residue-based polyaluminum ferric chloride for dyeing wastewater treatment

赤泥基PAFC 协同混凝印染污水的试验研究

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Considering that Fe, Al elements in bauxite residue are active components for water purification, an effective polyaluminum ferric chloride (PAFC) coagulant derived from bauxite residue, with Fe2O3 content > 5.1%, Al2O3 % > 6.5%, basicity > 65%, was successfully prepared. The effect of as-prepared PAFC on the zeta potential for printing and dyeing wastewater was investigated. Comparing with polyferric chloride (PFC) and polyferric sulfate (PFS) for printing and dyeing wastewater treatment, prepared bauxite residue-based PAFC exhibited the optimal performance in the aspects of chromaticity and chemical oxygen demand (COD) removal rate. Furthermore, the combination of bauxite residue-based PAFC and PFS for synergy coagulation of such wastewater demonstrated an obvious positive effect. With the proportion between as-prepared PAFC and PFS to be 2.5:1, the COD of treated wastewater could be further reduced to meet the national level A standard of China, providing a promising route to solve the problem of substandard printing and dyeing sewage outfall by a simple coagulation strategy.

摘要

利用赤泥所含有的Fe、Al 等具有净水作用的元素,制备出Fe2O3 含量>5.1%、Al2O3 含量>6.5%、 碱度>65%的赤泥基PAFC,考察了赤泥基PAFC 对印染污水zeta 电位的影响。对赤泥基聚合氯化铝铁 (PAFC)、聚合氯化铝(PAC)、聚合氯化铁(PFC)和聚合硫酸铁(PFS)在印染污水处理中进行混 凝对比的研究表明,赤泥基PAFC 在色度和COD 去除率方面明显优于同类产品。 进一步对比研究PAFC 和PFS 协同混凝的效果,优化出赤泥基PAFC 正向协同混凝PFS,按照2.5:1 的投料比,可进一步降 低印染污水COD 去除率,达到国家1 级A 的标准,很好地解决了印染污水外排不达标的难题。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Xiao-fei, YE Yu-zhen, XUE Sheng-guo, JIANG Jun, WU Chuan, KONG Xiang-feng, HARTLEY W, LI Yi-wei. Leaching optimization and dissolution behavior of alkaline anions in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1248–1255. DOI: 10.1016/S1003-6326(18)64763-6.

    Article  Google Scholar 

  2. LIU Gui-hua, WU Guo-yu, JIANG Hai-lang, QI Tian-gui, PENG Zhi-hong, ZHOU Qiu-sheng, LI Xiao-bin. Safe utilization of chromium-bearing vanadate residue by recovery of vanadium and chromium based on calcium circulation [J]. Journal of Central South University, 2018, 25: 2349–2359. DOI: org/10.1007/s11771-018-3919-0.

    Article  Google Scholar 

  3. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing-yu, WU Hao, RAJENDRAN M, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  4. CRAMER A J, COLE J M. Removal or storage of environmental pollutants and alternative fuel sources with inorganic adsorbents via host-guest encapsulation [J]. Journal of Materials Chemistry A, 2017, 5(22): 10746–10771. DOI: 10.1039/C7TA02401K.

    Article  Google Scholar 

  5. KONG Xiang-feng, JIANG Xing-xing, XUE Sheng-guo, HUANG Ling, HARTLEY W, WU Chuan, LI Xiao-bin. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  6. MEHMET K, ORHAN T C, MAHMUT B. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes J]. Journal of Hazardous Materials, 2003, 100: 163–178. DOI: org/10.1016/S0304-3894(03)00102-X.

    Article  Google Scholar 

  7. XUE Sheng-guo, LI Meng, JIANG Jun, MILLAR G J, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  8. WANG Xin, ZHANG Yi, LU Rong, ZHOU Feng, AN Qi, MENG Zi, FEI Bin, LV Feng. Novel multiple coagulant from Bayer red mud for oily sewage treatment, Desalination and Water Treatment [J]. Journal of Water Process Engineering, 2015, 6: 158–165. DOI: org/10.1016/j.jwpe.2015.04.003.

    Article  Google Scholar 

  9. KONG Xiang-Feng, TIAN Tao, XUE Sheng-guo, HARTLEY W, HUANG Long, WU Chuan, LI Chu. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation and Development, 2018, 29(1): 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  10. XUE Sheng-guo, YE Yu-zhen, ZHU Feng, WANG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  11. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  12. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.

    Article  Google Scholar 

  13. ZHU Feng, LI Yu-hua, XUE Sheng-guo, HARTLEY W, WU Hao. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23(9): 9073–9081. DOI: 10.1007/s11356-016-6172-9.

    Article  Google Scholar 

  14. WU Chuan, SHI Li, XUE Sheng-guo, LI Wai-chin, JIANG Xing-xing, RAJENDRAN M, QIAN Zi. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils [J]. Science of the Total Environment, 2019, 647: 1158–1168. DOI: 10.1016/j.scitotenv.2018.08.087.

    Article  Google Scholar 

  15. WANG Jun, CHENG Qing, XUE Sheng-guo, RAJENDRAN M, WU Chuan, LIAO Jia. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland [J]. Environmental Science and Pollution Research, 2018, 10: 9998–10005. DOI: 10.1007/s11356-018-1338-2.

    Article  Google Scholar 

  16. XUE Sheng-guo, WU Yu, LI Yi-wei, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, YE Yu. Industrial waste applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  17. ZHOU Lyu, ZHOU Hong, YANG Xiao. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment [J]. Separation and Purification Technology, 2019, 210: 93–99. DOI: org/10.1016/j.seppur.2018.07.089.

    Article  Google Scholar 

  18. LIANG Yan, KRAUS T E C, SILVA L C R, BACHAND P A M, BACHAND S M, DOANE T A, HORWATHA W R. Effects of ferric sulfate and polyaluminum chloride coagulation enhanced treatment wetlands on Typha growth, soil and water chemistry [J]. Science of the Total Environment, 2019, 648: 116–124. DOI: org/10.1016/j.scitotenv.2018.07.341.

    Article  Google Scholar 

  19. WANG Qi, LUAN Zhao, WEI Ning, LI Jin, LIU Cheng. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution [J]. Journal of Hazardous Materials, 2009, 170: 690–698. DOI: org/10.1016/j.jhazmat.2009.05.011.

    Article  Google Scholar 

  20. NI Fan, HE Jin, WANG Yan, LUAN Zhao, Preparation and characterization of a cost-effective red mud/polyaluminum chloride composite coagulant for enhanced phosphate removal from aqueous solutions [J]. Journal of Water Process Engineering, 2015, 6: 158–165. DOI: org/10.1016/j.jwpe.2015.04.003.

    Google Scholar 

  21. EL-GOHARY F, TAWFIK A. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process [J]. Desalination, 2009, 249(3): 1159–1164. DOI: org/10.1016/j.desal.2009.05.010.

    Article  Google Scholar 

  22. KOBYA M, ONCEL M S, DEMIRBA E, ŞIKB E, AKYOL A, INCE M. The application of electrocoagulation process for treatment of the red mud dam wastewater from Bayer’s process [J]. Journal of Environmental Chemical Engineering, 2014, 2(4): 2211–2220. DOI: org/10.1016/j.jece.2014.09. 008.

    Article  Google Scholar 

  23. OLIVEIRAA A A S, TEIXEIRAA I F, CHRISTOFANIA T A I S, TRISTÃOB J C, GUIMARÃESC I R, MOURA F C C. Biphasic oxidation reactions promoted by amphiphilic catalysts based on red mud residue [J]. Applied Catalysis B: Environmental, 2014, 144: 144–151. DOI: org/10.1016/j.apcatb.2013.07.015.

    Article  Google Scholar 

  24. BENTOA N I, SANTOSA P S C, de SOUZAB T E, OLIVEIRAB L C A, CASTRO C S. Composites based on PET and red mud residues as catalyst for organic removal from water [J]. Journal of Hazardous Materials, 2016, 314: 304–311. DOI: org/10.1016/j.jhazmat.2016.04.066.

    Article  Google Scholar 

  25. CRINI G. Non-conventional low-cost adsorbents for dye removal: A review [J]. Bioresource Technology, 2006, 97(9): 1061–1085. DOI: org/10.1016/j.biortech.2005.05.001.

    Article  Google Scholar 

  26. KAZAK O, TOR A, AKINB I, ARSLANC G. Preparation and characterization of novel polysulfone-red mud composite capsules for the removal of fluoride from aqueous solutions [J]. RSC Advances, 2016, 6(89): 86673–86681. DOI: 10.1039/C6RA12055E.

    Google Scholar 

  27. WANG Shao, ANG T H M, TADE M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes [J]. Chemosphere, 2008, 72: 1621–1635. DOI: org/10.1016/j.chemosphere.2008. 05.013.

    Article  Google Scholar 

  28. YANG Cong-ren, JIAO Fen, QIN Wen-qing. Leaching of chalcopyrite: An emphasis on effect of copper and iron ions [J]. Journal of Central South University, 2018, 25: 2380–2386. DOI: org/10.1007/s11771-018-3922-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Jiang  (江钧) or Li Feng  (冯莉).

Additional information

Foundation item: Project(BE2015628) supported by Jiangsu Province Science and Technology Support Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Jy., Gao, Fz., Zhu, F. et al. Synergistic coagulation of bauxite residue-based polyaluminum ferric chloride for dyeing wastewater treatment. J. Cent. South Univ. 26, 449–457 (2019). https://doi.org/10.1007/s11771-019-4017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4017-7

Key words

关键词

Navigation