Skip to main content
Log in

Treatment of bauxite residue dust pollution by improving structural stability via application of synthetic and natural polymers

人工合成及天然高分子材料在铝土矿尾矿粉尘污染防治中的 沙土结构稳定性优化研究

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The residue drying area (RDA) is the major source of fugitive red sand (RS) dust emissions in the bauxite mining industry and causes serious environmental and safety detriments. Polymer stabilizer (PS) is one of the promising non-traditional stabilizers to mitigate such issues. This research investigated the unconfined compressive strength (UCS) of RS using synthetic polymer stabilizer (SPS) and natural polymer stabilizer (NPS), and to determine the optimum application concentration and mixing ratio of the PAM and Guar gum mixture. Results illustrated that PAM apparently outperform Guar gum in stabilizing sand particles. The mixture of PAM and Guar gum is more effective than individual use. The optimum polymer concentration and the mixing ratio are 0.94 wt.% and 0.6 (PAM: total (PAM + Guar gum)), respectively. A rigorous regression model was developed to predict the UCS value based on application concentration and mixing ratio for the purpose of cost and time efficiency.

摘要

在铝土矿产业中,尾矿库作为主要尘源会导致严重的环境及安全问题。使用高分子固沙剂降低 尾矿库扬尘是较有潜力的治理方案。本文深入研究了人工合成高分子材料聚丙烯酰胺及天然高分子材 料瓜尔胶对铝土矿尾矿砂单轴抗压强度的影响并得出了两种固沙剂的最优配比。结果表明,聚丙烯酰 胺在固沙效能上高于瓜尔胶且两者混合使用的效果优于单一使用。聚丙烯酰胺及瓜尔胶在0.94 wt. % 浓度及3:2 混合时达到最优固沙效果。本文同时提出了基于两种固沙剂不同浓度及配比条件下的有效 快速预测单轴抗压强度的数学模型。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHU F, CHENG Q Y, XUE S G, LI C X, HARTLEY W, WU C, TIAN T. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation & Development, 2018, 29: 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  2. XUE S G, YE Y Z, ZHU F, WANG Q L, JIANG J, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018. 10.010.

    Article  Google Scholar 

  3. LIU Z W, LI W X, MA W H, YIN Z L, WU G B. Comparison of deep desulfurization methods in alumina production process [J]. Journal of Central South University, 2015, 22: 3745–3750.

    Article  Google Scholar 

  4. LIAO J X, JIANG J, XUE S G, CHENG Q Y, WU H, MANIKANDAN R, HARTLEY W, HUANG L. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35: 840–847. DOI: 10.1080/01490451. 2018.1479807.

    Article  Google Scholar 

  5. IAI. Background information on typical bauxite residue [M]. European Aluminum Association, 2013.

    Google Scholar 

  6. MAYES W, BURKE I, GOMES H, ANTON Á, MOLNÁR M, FEIGL V, UJACZKI É. Advances in understanding environmental risks of red mud after the Ajka spill, Hungary [J]. Journal of Sustainable Metallurgy, 2016, 2: 332–343.

    Article  Google Scholar 

  7. GELENCSÉR A S, KOVÁTS N R, TURÓCZI B, ROSTÁSI A G, HOFFER A S, IMRE K L, NYIRŐ-KÓSA I, CSÁKBERÉNYI-MALASICS D, TÓTH A D M, CZITROVSZKY A R. The red mud accident in Ajka (Hungary): Characterization and potential health effects of fugitive dust [J]. Environmental Science & Technology, 2011, 45: 1608–1615.

    Article  Google Scholar 

  8. DAUVIN J C. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: The example of the Cassidaigne canyon (north-western Mediterranean Sea) [J]. Marine Pollution Bulletin, 2010, 60: 197–206.

    Article  Google Scholar 

  9. KONG X F, JIANG X X, XUE S G, HUANG L, HARTLEY W, WU C, LI X F. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Trans Nonferrous Met Soc China, 2018, 28: 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  10. KONG X F, TIAN T, XUE S G, HARTLEY W, HUANG L, WU C, LI C X. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation & Development, 2018, 29: 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  11. XUE S G, KONG X F, ZHU F, HARTLEY W, LI X F, LI Y W. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23: 12822–12834. DOI: 10.1007/s11356-016-6478-7.

    Article  Google Scholar 

  12. ZHU F, HOU J T, XUE S G, WU C, WANG Q L, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation & Development, 2017, 28: 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  13. YANG H B, PAN X L, YU H Y, TU G F, SUN J M. Effect of ferrite content on dissolution kinetics of gibbsitic bauxite under atmospheric pressure in NaOH solution [J]. Journal of Central South University, 2017, 24: 489–495.

    Article  Google Scholar 

  14. EVANS K, NORDHEIM E, TSESMELIS K. Bauxite residue management [J]. Light Metals, 2012: 63–66.

    Google Scholar 

  15. GRÄFE M, POWER G, KLAUBER C. Bauxite residue issues: III alkalinity and associated chemistry [J]. Hydrometallurgy, 2011, 108: 60–79.

    Article  Google Scholar 

  16. Alcoa. Dust management plan for the Alcoa Pinjarra bauxite residue disposal area [R]. 2007.

    Google Scholar 

  17. HOWE P L, CLARK M W, REICHELT-BRUSHETT A, JOHNSTON M. Toxicity of raw and neutralized bauxite refinery residue liquors to the freshwater cladoceran Ceriodaphnia dubia and the marine amphipod Paracalliope australis [J]. Environmental Toxicology and Chemistry, 2011, 30: 2817–2824.

    Article  Google Scholar 

  18. LI Y, HAYNES R, ZHOU Y F, CHANDRAWANA I. Chemical and physical properties of seawater-neutralized bauxite residue mud and sand and the effects of leaching [J]. International Journal of Environmental Science and Development, 2016, 7: 273–277.

    Article  Google Scholar 

  19. POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: I. current management, disposal and storage practices [J]. Hydrometallurgy, 2011, 108: 33–45.

    Article  Google Scholar 

  20. XUE S G, ZHU F, KONG X F, WU C, HUANG L, HUANG N, HARTLEY W. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23: 1120–1132. 10.1007/s11356-015-4558-8.

    Article  Google Scholar 

  21. XUE S G, LI M, JIANG J, MILLAR G J, LI C X, KONG X F. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2018, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  22. LI Y W, JIANG J, XUE S G, MILLAR G J, KONG X F, LI X F, LI M, LI C X. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 2125–2134. DOI: 10.1016/S1003-6326(18)64857-5.

    Article  Google Scholar 

  23. KLAUBER C, HARWOOD N, HOCKRIDGE R, MIDDLETON C. Proposed mechanism for the formation of dust horizons on bauxite residue disposal areas [J]. Light Metals, 2016: 951–956.

    Google Scholar 

  24. ZHU F, ZHOU J Y, XUE S G, HARTLEY W, WU C, GUO Y. Aging of bauxite residue in association of regeneration: A comparison of methods to determine aggregate stability & erosion resistance [J]. Ecological Engineering, 2016, 92: 47–54. DOI: 10.1016/j.ecoleng.2016.03.025.

    Article  Google Scholar 

  25. ZHU F, LIAO J X, XUE S G, HARTLEY W, ZOU Q, WU H. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv. 2016.08.108.

    Article  Google Scholar 

  26. GAO W, WU Z, WU Z. Study of mechanism of the W-OH sand fixation [J]. Journal of Environmental Protection, 2012, 3: 1025–1033.

    Article  Google Scholar 

  27. LIU J, SHI B, JIANG H T, HUANG H, WANG G H, KAMAI T. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer [J]. Engineering Geology 2011, 117: 114–120.

    Google Scholar 

  28. XU G, DING X H, KURUPPU M, ZHOU W, BISWAS W. Research and application of non-traditional chemical stabilizers on bauxite residue (red sand) dust control, a review [J]. Science of the Total Environment, 2017, 616: 1552–1565.

    Google Scholar 

  29. IYENGAR S R, MASAD E, RODRIGUEZ A K, BAZZI H S, LITTLE D, HANLEY H J M. Pavement subgrade stabilization using polymers: Characterization and performance [J]. Journal of Material in Civil Engineering, 2013, 25: 472–483.

    Article  Google Scholar 

  30. KHATAMI H R, O’KELLY B C. Improving mechanical properties of sand using biopolymers [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 139: 1402–1406.

    Article  Google Scholar 

  31. ZANDIEH A R, YASROBI S S. Study of factors affecting the compressive strength of sandy soil stabilized with polymer [J]. Geotechnical and Geological Engineering, 2010, 28: 139–145.

    Article  Google Scholar 

  32. AL-KHANBASHI A, EL-GAMAL M. Modification of sandy soil using water-borne polymer [J]. Journal of Applied Polymer Science, 2002, 88: 2484–2491.

    Article  Google Scholar 

  33. HUANG H, SHI B, LIU J, GAO W, JIANG H T. Experimental study on the strength of soil modified by STW ecotypic soil stabilizer [J]. Journal of Disaster Prevention and Mitigation Engineering, 2008, 28: 87–97.

    Google Scholar 

  34. JIANG C, SHI B, LIU F, LIU J, HUANG H. Study on soil improvement of expansive soil slope with ecotypic soil stabilizer in Ning-Huai Expressway [J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29: 507–512.

    Google Scholar 

  35. AL-KHANBASHI A, ABDALLA S W. Evaluation of three waterborne polymers as stabilizers for sandy soil [J]. Geotechnical & Geological Engineering, 2006, 24: 1603–1625.

    Article  Google Scholar 

  36. CHEN R, RAMEY D, WEILAND E, LEE I, ZHANG L. Experimental investigation on biopolymer strengthening of mine tailings [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142: 06016017.

    Article  Google Scholar 

  37. CHANG I, CHO G C. Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer [J]. Construction and Building Materials, 2012, 30: 30–35.

    Article  Google Scholar 

  38. CHANG I, IM J, CHO G C. Geotechnical engineering behaviors of gellan gum biopolymer treated sand [J]. Canadian Geotechnical Journal, 2016, 53: 1658–1670.

    Article  Google Scholar 

  39. Australian Standard. AS1289.3.6.1. Standard method of analysis by sieving in Methods of testing soils for engineering purposes—Soil classification tests— Determination of the particle size distribution of a soil [S]. 2009.

  40. Australian Standard. AS1289.5 Methods of testing soils for engineering purposes, Method 51 1: Soil compaction and density tests—Determination of the dry density/moisture content relation of a soil using standard compactive effort [S]. 2003.

  41. Australian Standard. AS1289.6.2.2. Soil strength and consolidation tests—Determination of the shear strength of a soil—Direct shear test using a shear box: Methods of testing soils for engineering purposes [S]. 1998.

  42. JITSANGIAM P, NIKRAZ H, JAMIESON E. Sustainable use of a bauxite residue (red sand) in terms of roadway materials [C]//Proceedings of the 2nd International Conference on Sustainable Engineering and Science. Auckland, New Zealand, 2007: 20–23.

    Google Scholar 

  43. NEWSON T, DYER T, ADAM C, SHARP S. Effect of structure on the geotechnical properties of bauxite residue [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132: 143–151.

    Article  Google Scholar 

  44. ORTS W J, ROA-ESPINOSA A, SOJKA R E, GLENN G M, IMAM S H, ERLACHER K, PEDERSEN J S. Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications [J]. Journal of Materials in Civil Engineering, 2007, 19: 58–66.

    Article  Google Scholar 

  45. DOU Chao, LI Fa-sheng, WU L S. Soil erosion as affected by polyacrylamide application under simulated furrow irrigation with saline water [J]. Pedosphere, 2012, 22: 681–688.

    Article  Google Scholar 

  46. LENTZ R D, SOJKA R E. Applying polymers to irrigation water: Evaluating strategies for furrow erosion control [J]. Transactions of the ASAE, 2000, 43: 1561–1568.

    Article  Google Scholar 

  47. BJORNEBERG D L, AASE J K. Multiple polyacrylamide applications for controlling sprinkler irrigation runoff and erosion [J]. Applied Engineering in Agriculture, 2000, 16: 501–504.

    Article  Google Scholar 

  48. AASE J K, BJORNEBERG D L, SOJKA R E. Sprinkler irrigation runoff and erosion control with polyacrylamidelaboratory tests [J]. Soil Science Society of America Journal, 1998, 62: 1681–1687.

    Article  Google Scholar 

  49. HE J J, CAI Q G, TANG Z J. Wind tunnel experimental study on the effect of PAM on soil wind erosion control [J]. Environmental Monitoring and Assessment, 2008, 145: 185–193.

    Article  Google Scholar 

  50. ARTHUR G, LEONID V, JIFTAH B A. Combating wind erosion of sandy soils and crop damage in the coastal deserts: Wind tunnel experiments [J]. Aeolian Research, 2013, 9: 69–73.

    Article  Google Scholar 

  51. ROA-ESPINOSA A, BUBENZER G, MIYASHITA E. Sediment and runoff control on construction sites using four application methods of polyacrylamide mix [C]//Proceedings of the National Conference on Tools for Urban Water Resource Management and Protection. USEPA Office of Research and Development EPA/625/R-00/001, 2000: 278–283.

    Google Scholar 

  52. CASAS J A, MOHEDANO A F, GARCÍA-OCHOA F. Viscosity of guar gum and xanthan/guar gum mixture solutions [J]. Journal of the Science of Food and Agriculture, 2000, 80: 1722–1727.

    Article  Google Scholar 

  53. DING X H, XU G. Innovative sample preparation apparatus and method to construct cylindrical specimen for mechanical properties test of sandy materials [M]//Office TAP, ed. Vol 2016102039. Australia, 2016.

    Google Scholar 

  54. ASTM. D2166/D2166M-16. Standard test method for unconfined compressive strength of cohesive soil [S]. American Society for Testing and Materials International, 2006.

    Google Scholar 

  55. MONTGOMERY D C. Design and analysis of experiments [M]. John Wiley & Sons, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu  (徐光).

Additional information

Foundation item: Project(2016YFC0501103) supported by the National Key Research and Development Program of China; Project(51574222) supported by the General Program of National Science Foundation of China; Project(SKLCRSM15KF01) supported by Independent Research Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT, China; Project(2015) supported by the Mining Education Australia Collaborative Research Grant Scheme

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Xh., Xu, G., Zhou, W. et al. Treatment of bauxite residue dust pollution by improving structural stability via application of synthetic and natural polymers. J. Cent. South Univ. 26, 440–448 (2019). https://doi.org/10.1007/s11771-019-4016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4016-8

Key words

关键词

Navigation