Skip to main content
Log in

Equilibrium concentration of lithium ion in sodium aluminate solution

铝酸钠溶液中锂离子的平衡浓度

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Excess lithium in alumina is significantly bad for aluminum reduction. In this study, the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated. Elevating temperature, increasing caustic soda concentration, reducing alumina concentration or raising molar ratio α k improved equilibrium concentration of lithium ion in sodium aluminate solution. Agitation speed had a minimal effect on lithium ion concentration. Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process, whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h. Moreover, equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation, about 95% lithium was precipitated into red mud (bauxite residue) and aluminum hydroxide. This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.

摘要

氧化铝中过量的锂不利于铝电解。本文研究了含锂铝酸钠溶液中锂离子平衡浓度的变化。研究 表明,升高温度、增大苛性碱浓度、减小氧化铝浓度或升高苛性比值( α k)将有助于提高铝酸钠溶液 中锂离子的浓度。搅拌速率对锂离子浓度影响很小。在拜耳溶出过程中,当铝酸钠溶液中锂离子平衡 浓度超过0.65 g/L 时,在晶种分解9 h 后,铝酸钠溶液中锂离子浓度仅为35 mg/L。进一步研究发现, 勃姆石或硬水铝石的溶出过程到晶种分解过程锂离子的平衡浓度急剧下降,大约有95%的锂会进入赤 泥和氢氧化铝中。本文为氧化铝厂铝酸钠溶液中高效去除锂或回收锂提供了依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HUANG Hai-bo, QIU Shi-lin. Influences of rich-lithium alumina on aluminum reduction production [J]. Light Metals, 2014(8): 26–28. (in Chinese)

    Google Scholar 

  2. DANIELIK V, FELLNER P, THONSTAD J. Content of sodium and lithium in aluminium during electrolysis of cryolite-based melts [J]. Journal of Applied Electrochemistry, 1998, 28(11): 1265–1268.

    Article  Google Scholar 

  3. TABEREAUX A T, ALCORN T R, TREMBLEY L. Lithium-modified low ratio electrolyte chemistry for improved performance in modern reduction cells [M]//Essential Readings in Light Metals. Cham: Springer, 2016: 83–88.

    Google Scholar 

  4. MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review [J]. Hydrometallurgy, 2014, 150: 192–208.

    Article  Google Scholar 

  5. SWAIN B. Recovery and recycling of lithium: A review [J]. Separation and Purification Technology, 2017, 172: 388–403.

    Article  Google Scholar 

  6. CHAGNES A, POSPIECH B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries [J]. Journal of Chemical Technology and Biotechnology, 2013, 88(7): 1191–1199.

    Article  Google Scholar 

  7. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, HARTLEY W. A review of the characterization and revegetation of bauxite residues (Red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132.

    Article  Google Scholar 

  8. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138–149.

    Article  Google Scholar 

  9. FURUKAWA T, HIAKAWA Y, KONDO H, KANEMURA T. Dissolution behavior of lithium compounds in ethanol [J]. Nuclear Materials and Energy, 2016, 9: 286–291.

    Article  Google Scholar 

  10. FURUKAWA T, HIRAKAWA Y, KONDO H, KANEMURA T, WAKAI E. Chemical reaction of lithium with room temperature atmosphere of various humidities [J]. Fusion Engineering and Design, 2015, 98: 2138–2141.

    Article  Google Scholar 

  11. SILAMBARASAN A, RAJESH P, RAMASAMY P. Nucleation kinetics and growth aspects of negative solubility lithium sulphate monohydrate single crystal [J]. Journal of Crystal Growth, 2015, 409: 95–99.

    Article  Google Scholar 

  12. KIM T, OLEK J. The effects of lithium ions on chemical sequence of alkali-silica reaction [J]. Cement and Concrete Research, 2016, 79: 159–168.

    Article  Google Scholar 

  13. STEPHEN E F, MILLER P D. Solubility of lithium hydroxide in water and vapor pressure of solutions above 220° F [J]. Journal of Chemical and Engineering Data, 1962, 7(4): 501–505.

    Article  Google Scholar 

  14. MONNIN C, DUBOIS M. Thermodynamics of the LiOH+ H2O system [J]. Journal of Chemical and Engineering Data, 2005, 50(4): 1109–1113.

    Article  Google Scholar 

  15. PENSADO-RODRIGUEZ O, URQDIDI-MACDONALD M, MACDONALD D D. Electrochemical behavior of lithium in alkaline aqueous electrolytes. I. Thermodynamics [J]. Journal of the Electrochemical Society, 1999, 146(4): 1318–1325.

    Article  Google Scholar 

  16. van STRATEN H A, SCHOONEN M A A, de BRUVN P L. Precipitation from supersaturated aluminate solutions. III. Influence of alkali ions with special reference to Li+ [J]. Journal of Colloid and Interface Science, 1985, 103(2): 493–507.

    Google Scholar 

  17. LI Xian, LONG Zhi. Studies of the process for producing lithium-bearing alumina [J]. Mining and Metallurgical Engineering, 1989(3): 46–50. (in Chinese)

    Google Scholar 

  18. VILYUGINA M D, MAKARENKOV V M, EREMIN N I. Lithium oxide solubility in aluminate solutions at elevated temperatures [J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgia, 1983, 5: 72–74. (in Russian)

    Google Scholar 

  19. CHENG Jian, GUO Lie, XU Shi, ZHANG Rui. Submicron γ-LiAlO2 powder synthesized from boehmite [J]. Chinese Journal of Chemical Engineering, 2012, 20(4): 776–783.

    Article  Google Scholar 

  20. HEO S J, HU B, MANTHINA V, HILMI A, YUH C Y, SURENDRANATH A, SINGH P. Stability of lithium aluminate in reducing and oxidizing atmospheres at 700 °C [J]. International Journal of Hydrogen Energy, 2016, 41(41): 18884–18892.

    Article  Google Scholar 

  21. LIU Gui-hua, LI Zheng, QI Tian-gui, ZHOU Qiu-sheng, PENG Zhi-hong, LI Xiao-bin. Continuous changes in electrical conductivity of sodium aluminate solution in seeded precipitation [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 4160–4166.

    Article  Google Scholar 

  22. XUE Sheng-guo, YE Yu, ZHU Feng, WANG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  23. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-hua Liu  (刘桂华).

Additional information

Foundation item: Project(2015BAB04B01) supported by the National Key Technology R & D Program of China; Project(FA2017029) supported by Science and Technology Program of Chongzuo, China; Project(CSUZC201811) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Wq., Liu, Gh., Liu, P. et al. Equilibrium concentration of lithium ion in sodium aluminate solution. J. Cent. South Univ. 26, 304–311 (2019). https://doi.org/10.1007/s11771-019-4002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4002-1

Key words

关键词

Navigation