Journal of Central South University

, Volume 25, Issue 12, pp 3052–3061 | Cite as

Comparative experiments on electro-osmotic treatment effect of polluted soil using EKG and iron electrodes

  • Jun-chao Zang (臧俊超)
  • Ling-wei Zheng (郑凌逶)
  • Xin-yu Xie (谢新宇)Email author
  • Heng-yu Wang (王恒宇)
  • Yi-min Liu (刘亦民)
  • Jie Pang (庞杰)


This study presents a comprehensive comparison of the electro-osmosis treatments of heavy metal contaminated soil using electrokinetic geosynthetics (EKG) and iron electrodes in terms of both theoretical analysis and experimental research. The variation in the electrical parameters was analyzed, and the results show linear relationships between temperature and conductivity and between the soil and pore water conductivities. The average cathode contact resistance of iron is 60% smaller than that of EKG, whereas the average anode contact resistance of EKG is 56% smaller than that of iron. The values of the power consumption per unit mass of contaminants for EKG and iron are 1.895 and 1.989 kJ/g, respectively. After electro-osmosis, the number of soil pores increased, but the average area decreased, with an average area of 0.9100–1.0504 μm2. Based on microstructure analysis, we obtained higher electroosmotic efficiency and realized the effective analysis and utilization between macroscopic and microscopic parameters.

Key words

EKG contaminated soil electrical conductivity ion transport microstructure 

EKG 和铁电极加固修复污染土对比研究


本文从理论分析和实验研究两方面综合比较了EKG(Electrokinetic Geosynthetics)电极和铁电 极对重金属污染土壤的电渗处理效果。采用电学参数评价加固效果,结果显示温度和电导率之间以及 温度与土壤和孔隙水电导率之间具有一定的线性关系。铁电极试验组阴极的平均阴极接触电阻比 EKG 电极试验组的小60%,而EKG 试验组的平均阳极接触电阻比铁电极试验组的小56%。EKG 电 极试验组和铁电极试验组单位质量污染物的能耗分别为1.895 kJ/g 和1.989 kJ/g。电渗后土壤孔隙数量 增加,但平均面积减少,平均面积为0.9100~1.0504 μm2。通过微观结构分析,获得了较高的电渗效率, 实现了宏观和微观参数间的有效分析和利用。


EKG 污染土 电导率 离子运移 微观结构 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    IWATA M, TANAKA T, JAMI M S. Application of electro-osmosis for sludge dewatering—A review [J]. Drying Technology, 2013, 31(2): 170–184.CrossRefGoogle Scholar
  2. [2]
    MAHMOUD A, OLIVIER J, VAXELAIRE J, HOADLEY A F A. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering [J]. Water Research, 2010, 44(8): 2381–2407.CrossRefGoogle Scholar
  3. [3]
    TUAN P A, MIKA S, PIRJO I. Sewage sludge electrodewatering treatment—A review [J]. Drying Technology, 2012, 30(7): 691–706.CrossRefGoogle Scholar
  4. [4]
    KANIRAJ S R, YEE J H S. Electro-osmotic consolidation experiments on an organic soil [J]. Geotechnical and Geological Engineering, 2011, 29(4): 505–518.CrossRefGoogle Scholar
  5. [5]
    RISCO C, LOPEZ-VIZCAINO R, SAEZ C, YUSTRES A, CANIZARES P, NAVARRO V, RODRIGO M. Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant [J]. Chemical Engineering Journal, 2016, 285: 128–136.CrossRefGoogle Scholar
  6. [6]
    FIGUEROA A, CAMESELLE C, GOUVEIA S, HANSEN H K. Electrokinetic treatment of an agricultural soil contaminated with heavy metals [J]. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2016, 51(9): 691–700.CrossRefGoogle Scholar
  7. [7]
    HE F, GAO J, PIERCE E, STRONG P J, WANG H, LIANG L. In situ remediation technologies for mercurycontaminated soil [J]. Environmental Science and Pollution Research, 2015, 22(11): 8124–8147.CrossRefGoogle Scholar
  8. [8]
    MULLIGAN C N, YONG R N, GIBBS B F. An evaluation of technologies for the heavy metal remediation of dredged sediments [J]. Journal of Hazardous Materials, 2001, 85(1, 2): 145–163.CrossRefGoogle Scholar
  9. [9]
    HU Yu, WANG Zhao, ZHUANG Yan. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 709–714. (in Chinese)Google Scholar
  10. [10]
    JONES C J F P, LAMONT-BLACK J, GLENDINNING S. Electrokinetic geosynthetics in hydraulic applications [J]. Geotextiles and Geomembranes, 2011, 29(4): 381–390.CrossRefGoogle Scholar
  11. [11]
    GLENDINNING S, JONES C J F P, PUGH R C. Reinforced soil using cohesive fill and electrokinetic geosynthetics (EKG) [J]. International Journal of Geomechanics, ASCE, 2005, 5(2): 138–146.CrossRefGoogle Scholar
  12. [12]
    FOURIE A B, JONES C J F P. Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics (EKGs) [J]. Geotextiles and Geomembranes, 2010, 28(2): 181–190.CrossRefGoogle Scholar
  13. [13]
    KALUMBA D, GLENDINNING S, ROGERS C D F, TYRER M, BOARDMAN D I. Dewatering of tunneling slurry waste using electrokinetic geosynthetics [J]. Journal of Environmental Engineering, ASCE, 2009, 135(11): 1227–1236.CrossRefGoogle Scholar
  14. [14]
    PAPADOPULOS F, SPINELLI M, VALENTE S, FORONI L, ORRICO C, ALVIANO F. Common tasks in microscopic and ultrastructural image analysis using Image J [J]. Ultrastructural Pathology, 2007, 31(6): 401–407.CrossRefGoogle Scholar
  15. [15]
    FRIEDMAN S P. Soil properties influencing apparent electrical conductivity: A review [J]. Computer and Electronics in Agriculture, 2005, 46(1–3): 45–70.CrossRefGoogle Scholar
  16. [16]
    FETZER C A. Electro-osmotic stabilization of West Branch dam [J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967, 93(4): 85–106.Google Scholar
  17. [17]
    TAO Yan, ZHOU Jian, GONG Xiao, HU Ping. Electro-osmotic dehydration of hangzhou sludge with selected electrode arrangements [J]. Drying Technology, 2016, 34(1): 66–75.CrossRefGoogle Scholar
  18. [18]
    NIU Q F, FRATTA D, WANG Y H. The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils [J]. Journal of Hydrology, 2015, 522: 475–484.CrossRefGoogle Scholar
  19. [19]
    SADEGHALVAD B, AZADMEHR A R, MOTEVALIAN H. Statistical design and kinetic and thermodynamic studies of Ni(II) adsorption on bentonite [J]. Journal of Central South University, 2017, 24(7): 1529–1536.CrossRefGoogle Scholar
  20. [20]
    ZHOU Zi, DU Xue, CHEN Zhao, ZHAO Yun. Grouting diffusion of chemical fluid flow in soil with fractal characteristics [J]. Journal of Central South University, 2017, 24(5): 1190–1196.CrossRefGoogle Scholar
  21. [21]
    LIU Chun, SHI Bin, TANG Chao. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials [J]. Applied Clay Science, 2011, 54(1): 97–106.CrossRefGoogle Scholar
  22. [22]
    DATHE A, EINS S, NIEMEYER J, GEROLD G. The surface fractal dimension of the soil–pore interface as measured by image analysis [J]. Geoderma, 2001, 103(1, 2): 203–229.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center of Coastal and Urban Geotechnical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Ningbo Institute of TechnologyZhejiang UniversityNingboChina

Personalised recommendations