Skip to main content
Log in

Analysis of influencing factors on suction capacity in seabed natural gas hydrate by cutter-suction exploitation

海底天然气水合物绞吸式开采的绞吸能力影响因素分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow, cutter-head rotating speed, cutting depth and suction port position on the cutter-suction capacity. The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field, the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration. The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than 1000 m3/h. However, when it is more than 1000 m3/h, it is helpless. When the cutter-head rotate speed is within the range of 10–25 r/min, the cutter-suction efficiency stabilizes at about 95%. While the speed is greater than 25 r/min, the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed. With the increase of cutting depth, the cutter-suction efficiency first increases and then remains stable and finally decreases. The cutter-suction efficiency remains at about 94% when the suction port position deviation ranges from 0° to 30°, but it has a sharply reduction when the deviation angle is more than 30°.

摘要

本文根据切削头的结构和工作原理建立数学模型和计算机模型,研究了深海环境下切削头绞吸 流场模型中绞吸流量、绞刀转速、挖掘深度和吸口位置对绞吸能力的影响。通过分析绞吸流场的出口 固相体积分数变化规律、流场速度分布变化规律、固相浓度分布规律,间接分析了绞吸效率。结果表 明:在1000 m3/h 绞吸流量内增加绞吸流量能够明显有效地提高绞吸的效率,当超过1000 m3/h 时,绞 吸效率不再提高,维持在一个相对较高的稳定水平。当绞刀转速在10~25 r/min 范围内时,绞吸效率 稳定在95%左右的较高水平,当转速大于25 r/min 时,绞刀转速增加,绞吸效率降低。当绞刀的挖掘 深度低于0.5 m 时,绞吸效率随着挖掘深度的增加而增加,在0.5~0.7 m 之间时,管道入口固相体积 分数较高,绞吸效率也达到了最高值,当大于0.7 m 时,绞吸效率随着挖掘深度的增加反而降低。当 吸口位置偏离角度为0~30°时,切削头绞吸效率在94%以上且差别不大,当偏离位置大于30°时,切 削头绞吸效率急剧下降。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas-hydrates—A potential energy source for the 21st Century [J]. Journal of Petroleum Science & Engineering, 2007, 56(1–3): 14–31. DOI: https://doi.org/10.1016/j.petrol.2005. 10.009.

    Article  Google Scholar 

  2. BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources [J]. Energy & Environmental Science, 2011, 4(4): 1206–1215. DOI:10.1039/C0EE00203H.

    Article  Google Scholar 

  3. TIAN Gong. New sources of energy after shale gas—natural gas hydrate [J]. Natural Gas Industry, 2016, 36(5): 24. (in Chinese).

    Google Scholar 

  4. LI Peng. Study on hydraulic lifting law of coarse grain vertical pipe [D]. Beijing: Tsinghua University, 2007. (in Chinese). http://kreader.cnki.net/Kreader/CatalogViewPage. aspx?dbCode=cdmd&filename=2008088117.nh&tablename =CDFD9908&compose=&first=1&uid=WEEvREcwSlJHSld Ra1FhdkJkVWI2K1hhcHZlNk5VYkpOMDRIODk0T05zTT 0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHt wkF4VYPoHbKxJw!!.

    Google Scholar 

  5. YOON C H, PARK J M, KANG J S, et al. Shallow lifting test for the development of deep ocean mineral resources in Korea [C]//Proceedings of the 9th ISOPE Ocean Mining Symposium. Hawaii: International Society of Offshore and Polar Engineers, 2011, 14(5): 149–152. http://www.isope. org/publications/proceedings/ISOPE_OMS/OMS%202011/d ata/papers/M11-14Yoon.pdf.

    Google Scholar 

  6. PARK S J, YEU T K, HONG S, CHOI J S, KIMH W. Design of a Hardware-in-the-loop Simulation (HILS) of control and monitoring system for deep-seabed manganese nodule miner [C]//Proceedings of the 7th ISOPE Ocean Mining Symposium. Lisbon, Portugal, 2007: 198–203.

    Google Scholar 

  7. ZHU Chao, ZHANG Min, LIU Xiao, et al. Gas hydrates: Production, Geohazards and Monitoring [J]. Journal of Catastrophology, 2017, 32(3): 51–56. DOI: 10.3969/j.issn.1000-811X.2017.03.010.

    Google Scholar 

  8. LIU Yi. The perspective of natural gas industry chain overall planning in 12th five-year [J]. Natural Gas Industry, 2013, 33(2): 105–109. DOI: 10.3787/j.issn. 1000–0976.2013. 02.021. (in Chinese)

    Google Scholar 

  9. ZHOU Shou, CHEN Wei, LI Qing, ZHOU Jian, SHI He. Research on the solid Fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep waterarea [J]. China Offshore Oil and Gas, 2017, 29(4): 1–8. DOI: 10.11935/j.issn.1673-1506.2017.04.001. (in Chinese)

    Google Scholar 

  10. SONG Yong, YANG Lei, ZHAO Jia. The status of natural gas hydrate research in China: A review [J]. Renewable & Sustainable Energy Reviews, 2014, 31(2): 778–791. DOI: 10.1016/j.rser.2013.12.025.

    Article  Google Scholar 

  11. XU Hai, YANG Fang, WU Bo. A method of submarine natural gas hydrate cutter-suction: China, 2015 10568442.0 [P]. 2015–09.(in Chinese).

    Google Scholar 

  12. XU Hai, LIN Liang, WU Wan, WU Bo. Research on cutter-suction mining method for submarine natural gas hydrate [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(3): 48–52. http://www.ix ueshu.com/document/04d418d9d84b7db3318947a18e7f9386.html. (in Chinese)

    Google Scholar 

  13. LI Li, XU Hai, YANG Fang. Three-phase flow of submarine gas hydrate pipe transport [J]. Journal of Central South University, 2015, 22(9): 3650–3656. DOI: 10.1007/s11771-015-2906-y.

    Article  Google Scholar 

  14. CHEN Xiao. Analysis of rock cutting for large-sized cutter suction dredger [D]. Shanghai: Shanghai Jiao Tong University, 2012. DOI: 10.3963/j.issn.2095-3844.2013.01. 025. (in Chinese)

    Google Scholar 

  15. LING Liang. Analysis on cutting forces and influence factors of the suction dredger’s cutter [J]. Ship & Ocean Engineering, 2014, 43(4): 156–159. DOI: 10.3963/j.issn. 1671–7953.2014.04.040. (in Chinese)

    Google Scholar 

  16. ZHANG De. Cutting force calculation based on 2-D soild-cutting theory and stress analysis of cutterhead by ANSYS [D]. Nanjing: Hohai University, 2007. DOI: 10.7666/d.y1030679. (in Chinese)

    Google Scholar 

  17. WU Kai, JIA Tong, LIAN Dong, YAN Cai, DAI Mao. Research on design of mining tools of marine gas hydrate reservoirs [J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 225–231. DOI: 10.13433/j.cnki. 1003–8728.2017.0211. (in Chinese)

    Google Scholar 

  18. DEKKER M A, KRUYT N P, BURGER M D, VLASBLOM W J. Experimental and numerical investigation of cutter head dredging flows [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2003, 129(5): 203–209. DOI: 10.1061/(ASCE)0733-950X(2003)129:5(203).

    Article  Google Scholar 

  19. LIU Yong, ZHU Han, WU Ying, ZHENG Liang. Numerical simulation of influencing factors on sediment intake of cutter suction dredger [J]. Ship & Ocean Engineering, 2016, 45(4): 166–169. DOI: 10.3963/j.issn.1671-7953.2016. 04.039. (in Chinese)

    Google Scholar 

  20. FANG Yuan, NI Fu. Numerical simulation of 2-D water flow in and around cutter of a dredger [J]. China Harbour Engineering, 2011, 23(2): 4–7. DOI: 10.3969/j.issn.1003-3688.2011.02.002. (in Chinese)

    Google Scholar 

  21. WEI Xiao, ZHANG Yong, FAN Shi, XIONG Ting. The efficiency optimization of cutter suction dredger’s suction system based on differential envolution [J]. Ship & Ocean Engineering, 2017, 46(2): 143–147. DOI: 10.3963/j.issn. 1671–7953.2017.02.034. (in Chinese)

    Google Scholar 

  22. PADSALGIKAR A. Particle transport in stratified gas-liquid-solid flow [D]. Gradworks, 2015. https://search. proquest.com/docview/1708189909.

    Google Scholar 

  23. LIU Jian, SHAO Zu, ZHENG Yong. Numerical simulation of the decomposition of natural gas hydrates by depressurization [J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(1): 80–90. DOI: 10.11885/j.issn.1674-5086.2016.06.09. 01. (in Chinese)

    Google Scholar 

  24. CHENG X R, LI R N, GAO Y, GUO W L. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump [J]. Iop Conference Series: Materials Science & Engineering, 2013, 33(1): 257–260. DOI: 10.1088/1757-899X/52/6/062008.

    Google Scholar 

  25. CHENG X R, ZHANG N, ZHAO W. Pressure fluctuation features of sand particle-laden water flow in volute of double-suction centrifugal pump [J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 37–42. DOI: 10.3969/j.issn.1674-8530.14.0098.

    Google Scholar 

  26. RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, 47(93): 145–153. DOI: 10.1016/0167-6105(93)90124-7.

    Article  Google Scholar 

  27. LU Bo, LI Gan, SUN Dong, HUANG Shao, ZHANG Fu. Acoustie-physical properties of seafloor sediments from nearshore southeast China and their correlations [J]. Journal of Tropical Oceanography, 2006, 25(2): 12–17. DOI: 10.3969/j.issn. 1009–5470.2006.02.003. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-liang Xu  (徐海良).

Additional information

Foundation item: Project(51775561) supported by the National Natural Science Foundation of China; Project(20130162110004) supported by the National Doctoral Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Hl., Kong, Wy. & Hu, Wg. Analysis of influencing factors on suction capacity in seabed natural gas hydrate by cutter-suction exploitation. J. Cent. South Univ. 25, 2883–2895 (2018). https://doi.org/10.1007/s11771-018-3960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3960-z

Key words

关键词

Navigation