GOLDRING D C. Iron ore categorisation for the iron and steel industry [J]. Applied Earth Science, 2003, 112(1): 5–17. DOI: https://doi.org/10.1179/0371745032501162.
Article
Google Scholar
UPADHYAY R K, VENKATESH A S, ROY S. Mineralogical characteristics of iron ores in Joda and Khondbond areas in Eastern India with implications on beneficiation [J]. Resource Geology, 2010, 60(2): 203–211. DOI: https://doi.org/10.1111/j.1751-3928.2010.00126.x.
Article
Google Scholar
UPADHYAY R K, VENKATESH A S. Current strategies and future challenges on exploration, beneficiation and value addition of iron ore resources with special emphasis on iron ores from eastern India [J]. Applied Earth Science, 2006, 115(4): 187–95. DOI: https://doi.org/10.1179/174327506X13 8922.
Article
Google Scholar
SINHA M, NISTALA S H, CHANDRA S, MANKHAND T R. Mineralogy of iron ores of different alumina levels from Singhbhum belt and their implication on sintering process [J]. Journal of Minerals and Materials Characterization and Engineering, 2015, 3: 180–193. DOI: http://dx.doi.org/10.4236/jmmce.2015.33021.
Article
Google Scholar
MUWANGUZI A J, KARASEV A V, BYARUHANGA J K, JÖNSSON P G. Characterization of chemical composition and microstructure of natural iron ore from Muko deposits [J]. ISRN Materials Science, 2012, 3: 1–9. DOI: https://doi.org/10.5402/2012/147420.
Google Scholar
KUMAR M, JENA S, PATEL S K. Characterization of properties and reduction behavior of iron ores for application in sponge ironmaking [J]. Mineral Processing and Extractive Metallurgy Review, 2007, 29(2): 118–29. DOI: https://doi.org/10.1080/08827500701421896.
Article
Google Scholar
CHOKSHI Y, LIMAYE M A, DUTTA S K, LODHARI D R. Mineralogical studies of low-grade iron ore from jharkhand–orissa region, india [J]. Transactions of the Indian Institute of Metals, 2016, 69(1): 151–155. DOI: https://doi.org/10.1007/s12666-015-0740-4.
Article
Google Scholar
RAO D S, KUMAR T V, RAO S S, PRABHAKAR S, RAJU G B. Mineralogy and geochemistry of a low grade iron ore sample from Bellary-hospet sector, India and their implications on beneficiation [J]. Journal of Minerals and Materials Characterization and Engineering, 2009, 8(2): 115–131. DOI: 10.4236/jmmce.2009.82011.
Article
Google Scholar
MAHIUDDIN S, BONDYOPADHWAY S, BARUAH J N. A study on the beneficiation of Indian iron-ore fines and slime using chemical additives [J]. International Journal of Mineral Processing, 1989, 26(3, 4): 285–296. DOI: https://doi.org/10.1016/0301-7516(89)90034-3.
Article
Google Scholar
LU L. Effects of alumina on sintering performance of hematite iron ores [J]. ISIJ International, 2007, 47(3): 349–358. DOI: https://doi.org/10.2355/isijinternational.47. 349.
Google Scholar
CLOUT J M, MANUEL J R. Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores [J]. Powder Technology, 2003, 130(1): 393–399. DOI: https://doi.org/10.1016/S0032-5910(02)00241-3.
Article
Google Scholar
MAO Hong, ZHANG Ren, LV Xue, BAI Cheng, HUANG Xiao. Effect of surface properties of iron ores on their granulation behavior [J]. ISIJ International, 2013, 53(9): 1491–1496. DOI: https://doi.org/10.2355/isijinternational. 53.1491.
Google Scholar
LADAVOS A K, KATSOULIDIS A P, IOSIFIDIS A, TRIANTAFYLLIDIS K S, PINNAVAIA T J, POMONIS P J. The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids [J]. Microporous and Mesoporous Materials, 2012, 151: 126–133. DOI: https://doi.org/10.1016/j.micromeso.2011.11.005.
Article
Google Scholar
LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts [J]. Catalysis Today, 1998, 41(1): 207–219. DOI: https://doi.org/10.1016/S0920-5861(98)00050-9.
Article
Google Scholar
DWECK J. Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis [J]. Journal of Thermal Analysis and Calorimetry, 2008, 92(1): 129–135. DOI: https://doi.org/10.1007/s10973-007-8751-y.
Article
Google Scholar
BOUCHARD M, MILLIARD A, RIVARD S, NESS S. ISO 9516–1 simplified borate fusion/WDXRF analytical method for iron ore including total iron analysis: Part 2. [J]. Powder Diffraction, 2014, 29(2): 170–175. DOI: https://doi.org/10.1017/S0885715614000323.
Article
Google Scholar
Indian Standard IS: 11690. Method of moisture determination of iron ore lot [S]. Bureau of Indian Standards, 1986: 1–12. DOI: https://archive.org/details/gov.in.is.11690. 1986.
Indian Standard IS: 6495. Method of tumbler test for iron oxides: Lump ores, sinter and pellet [S]. Bureau of Indian Standards, 1984: 1–8. DOI: https://archive.org/details/gov.in.is.6495.1984.
Indian Standard IS: 9963. Method of determination of shatter index of iron ore lumps, sinter and Pellets [S]. Bureau of Indian Standards, 1981: 1–6. DOI: https://archive.org/details/gov.in.is.9963.1981.
Indian Standard IS: 1528. Methods of sampling and physical tests for refractory materials [S]. Bureau of Indian Standards, 2010: 1–3. DOI: https://archive.org/details/gov. in.is.1528.7. 2010.
KANEKO K. Determination of pore size and pore size distribution: 1. Adsorbents and catalysts [J]. Journal of Membrane Science, 1994, 96(1, 2): 59–89. DOI: https://doi.org/10.1016/0376-7388(94)00126-X.
Article
Google Scholar
MCCANN G, STREZOV V, LUCAS J A, EVANS T, STREZOV L. Iron ore characterisation during high temperature thermal processing [J]. Asia-Pacific Journal of Chemical Engineering, 2004, 12(3, 4): 369–382. DOI: https://doi.org/10.1002/apj.5500120412.
Google Scholar
FORMOSO A, MORO A, FERNÁNDEZ P G, MENÉNDEZ J L, MUNIZ M, CORES A. Influence of nature and particle size distribution on granulation of iron ore mixtures used in a sinter strand [J]. Ironmaking & Steelmaking. 2003, 30(6): 447–60. DOI: https://doi.org/10.1179/030192303225004187.
Google Scholar
CLOUT J M F, MANUEL J R. Iron Ore: Mineralogy, processing and environmental sustainability [M]. Sawston, Cambridge: Woodhead Publishing, 2015: 45–84.
Google Scholar
TSUKADA T, SEGAWA H, YASUMORI A, OKADA K. Crystallinity of boehmite and its effect on the phase transition temperature of alumina [J]. Journal of Materials Chemistry, 1999, 9(2): 549–53. DOI: 10.1039/A806728G.
Article
Google Scholar
BELLOTTO M, REBOURS B, EUZEN P. Mechanism of pseudo-boehmite dehydration: Influence of reagent structure and reaction kinetics on the transformation sequence [J]. Materials Science Forum, 1998, 278: 572–577. DOI: https://doi.org/10.4028/www.scientific.net/MSF.278-281.572.
Article
Google Scholar
CORES A, BABICH A, MUÑIZ M, ISIDRO A, FERREIRA S, MARTÍN R. Iron ores, fluxes and tuyere injected coals used in the blast furnace [J]. Ironmaking & Steelmaking, 2007, 34(3): 231–40. DOI: https://doi.org/10.1179/1743 28107X168066.
Article
Google Scholar
ULLAH R, DEB B K, MOLLAH M Y. Synthesis and characterization of silica coated iron-oxide composites of different ratios [J]. International Journal of Composite Materials, 2014, 4(2): 135–45. DOI: https://doi.org/10.5923/j.cmaterials.20140402.13.
Google Scholar
SALAMA W, AREF M E L, GAUPP R. Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136: 1816–1826. DOI: https://doi.org/10.1016/j.saa.2014.10.090.
Article
Google Scholar
SING K S. Adsorption methods for the characterization of porous materials [J]. Advances in colloid and interface science, 1998, 76: 3–11. DOI: https://doi.org/10.1016/s0001-8686(98)00038-4.
Article
Google Scholar
WEISSENBORN P K, DUNN J G, WARREN L J. Quantitative thermogravimetric analysis of haematite, goethite and kaolinite in Western Australian iron ores [J]. Thermochimica Acta, 1994, 239: 147–156. DOI: https://doi.org/10.1016/0040-6031(94)87063-2.
Article
Google Scholar
STREZOV V, ZIOLKOWSKI A, EVANS T J, NELSON P F. Assessment of evolution of loss on ignition matter during heating of iron ores [J]. Journal of Thermal Analysis and Calorimetry, 2010, 100(3): 901–907. DOI: https://doi.org/10.1007/s10973-009-0398-4.
Article
Google Scholar
ZERVAS T, MCMULLAN J T, WILLIAMS B C. Developments in iron and steel making [J]. International journal of energy research, 1996, 20(1): 69–91. DOI: https://doi.org/10.1002/(SICI)1099-114X(199601)20:1<69::AIDER241> 3.0.CO;2-3.
Article
Google Scholar
DE LIMA L C, DUARTE J B, VEZIROGLU T N. A proposal of an alternative route for the reduction of iron ore in the eastern Amazonia [J]. International Journal of Hydrogen Energy, 2004, 29(6): 659–661. DOI: https://doi.org/10.1016/S0360-3199(03)00053-3.
Article
Google Scholar
MICHISHITA H, TANAKA H. Prospects for coal-based direct reduction process [J]. Kobelco Technology Review, 2010, 29: 69–76. DOI: http://www.kobelco.co.jp/english/ktr/pdf/ktr_29/whole.pdf.
Google Scholar
BEDARKAR S S, SINGH R. Removal of phosphorous from steel produced by melting sponge iron in induction furnace [J]. Transactions of the Indian Institute of Metals, 2013, 66(3): 207–211. DOI: https://doi.org/10.1007/s12666-013-0244-z.
Article
Google Scholar