Skip to main content
Log in

Variation analysis of ultimate pullout capacity of shallow horizontal strip anchor plate with 2-layer overlying soil based on nonlinear M-C failure criterion

基于非线性MC 破坏准则的上覆双层土体 水平浅埋条形锚板极限抗拔力变分分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule, a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed. The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced. When the 2-layer overlying soil is degraded into single-layer soil, the model of ultimate pullout force could also be degraded into the model of single-layer soil. And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method. Based on that, the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed. The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly. Thus, it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.

摘要

基于非线性Mohr-Coulomb 强度准则及相关联的流动法则, 构造出水平浅埋条形锚板上覆双层 土体破坏的机动许可场; 利用极限分析上限法, 结合变分原理, 推导出了水平浅埋条形锚板上覆双层 土体的极限抗拔力表达式及其对应破裂机制; 当上覆土层退化为单层土体时, 极限抗拔力计算模型可 以退化为既有单层土体计算模型; 通过单层土体变分法计算结果与刚体极限分析法计算结果的对比, 进一步证明了本文方法的正确性; 在此基础上, 分析了岩土物理力学参数变化对上覆双层土体锚板极 限抗拔力与土体破裂机制的影响。计算表明: 水平浅埋条形锚板上覆双层土体极限抗拔力和破坏模式 受岩土体非线性物理力学特性参数的影响非常显著, 工程实际中准确获取双层土体的岩土体物理力学 特性参数对于正确评估锚板极限抗拔特性非常重要。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MEYERHOF G G, ADAMS J I. Ultimate uplift capacity of foundation [J]. J Can Geotech, 1968, 5(4): 225–244.

    Article  Google Scholar 

  2. DAS B M. Model tests for uplift capacity of foundations in clay [J]. Soils and Foundations, 1978, 18(2): 17–24.

    Article  Google Scholar 

  3. MURRAY E J, GEDDES J D. Uplift of anchor plates in sand [J]. Journal of Geotechnical Engineering, ASCE, 1987, 113(3): 202–215.

    Article  Google Scholar 

  4. QIAN Ping, LIU Zu. Distortion and failure character of shallow buried inclined anchors [J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 62–66. (in Chinese)

    Google Scholar 

  5. HE Si. Study on bearing capacity of uplift anchor foundation [J]. Underground Space, 2002, 22(2): 145–148. (in Chinese)

    Google Scholar 

  6. ILAMPARUTHI K, DICKIN E A, MUTHUKRISHNAIAH K. Experimental investigation of the uplift capacity of circular plate anchors in sand [J]. J Can Geotech, 2002, 39: 648–664.

    Article  Google Scholar 

  7. CHU Xiao, LI Zhi, WANG Ren, ZHU Chang. The test research of anchor‘s uplift behavior in calcareous sand [J]. Geomaterial Mechanics, 2002, 23(3): 368–664. (in Chinese)

    Google Scholar 

  8. ZHU Chang, CHU Xiao. Calcareous sand in the limits of plate anchor uplift force calculation [J]. Rock and Geomaterial Mechanics, 2003, 24: 153–158. (in Chinese)

    Google Scholar 

  9. DING Pei, XIAO Zhi, ZHANG Qi, QIU Tao. Uplift capacity of plate anchors in sand [J]. Journal of Building Structures. 2003, 24(5): 82–91. (in Chinese)

    Google Scholar 

  10. DICKIN E A, LAMAN M. Uplift response of strip anchors in cohesionless soil [J]. Advances in Engineering Software, 2007, 38(9): 618–625.

    Article  Google Scholar 

  11. LIU Wen. The bearing behavior and calculation of the anti-uplift foundation [M]. Shanghai: Shanghai Jiao Tong University Press, 2007. (in Chinese)

    Google Scholar 

  12. ZHANG Ning, WU Huai, SHEN Jack Shui Long, HINO Takenori, YIN Zhen. Evaluation of the uplift behavior of plate anchor in structured marine clay [J]. Marine Georesources & Geotechnology, 2017, 35(6): 758–768.

    Article  Google Scholar 

  13. GIAMPA JOSEPH R, BRADSHAW AARON S, SCHNEIDER JAMES A. Influence of dilation angle on drained shallow circular anchor uplift capacity [J]. International Journal of Geomechanics, 2017, 17(2): 04016056.

    Article  Google Scholar 

  14. LIU Hua, HUANG Jing. Vertical uplift capacity of horizontal plate anchors [J]. Geotechnical Engineering Technique, 2007, 21(1): 25–27. (in Chinese)

    Google Scholar 

  15. GHALY A, HANNA A. Ultimate pullout resistance of single vertical anchors [J]. J Can Geotech, 1994, 31: 661–672.

    Article  Google Scholar 

  16. MERIFIELD R S, LYAMIN A V, SLOAN S W. Three-dimensional lower bound solutions for the stability of plate anchors in sand [J]. Géotechnique, 2006, 56(2): 123–132.

    Article  Google Scholar 

  17. KOUZER K M, KUMAR J. Vertical uplift capacity of equally spaced horizontal strip anchors in sand [J]. International Journal of Geomechanics, ASCE, 2009, 9(5): 230–236.

    Article  Google Scholar 

  18. ZHAO Lian, LI Liang, YANG Feng, LIU Xiang. Joined influences of nonlinearity and dilation on the ultimate pullout capacity of horizontal shallow plate anchors by energy dissipation method [J]. International Journal of Geomechanics, ASCE, 2011, 11(3): 195–201.

    Article  Google Scholar 

  19. KOUZER K M, KUMAR J. Vertical uplift capacity of two interfering horizontal anchors in sand using an upper bound limit analysis [J]. Computers and Geotechnics, 2009, 36(6): 1084–1089.

    Article  Google Scholar 

  20. KHATRI V N, KUMAR J. Vertical uplift resistance of circular plate anchors in clays under undrained condition [J]. Computers and Geotechnics, 2009, 36(8): 1352–1359.

    Article  Google Scholar 

  21. PARAMITA B, JYANT K. Seismic pullout capacity of inclined anchor plates in sand [J]. Geotechnical and Geological Engineering, 2017, 35(2): 679–692.

    Article  Google Scholar 

  22. PARAMITA B, ANAMITRA R. Variation of horizontal pullout capacity with width of vertical anchor plate [J]. Int J Geomech, 2016, 16(5): 06016002.

    Article  Google Scholar 

  23. PARAMITA B, JYANT K. Uplift capacity of anchors in layered sand using finite-element limit analysis: Formulation and results [J]. Int J Geomech, 2016, 16(3): 04015078.

    Article  Google Scholar 

  24. ZHAO Lian, YANG Xin, HUANG Fu, TANG Yi, HU Shi. Variational analysis of the ultimate pullout capacity of shallow circular anchor plates in rock foundations based on the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 190–197.

    Article  Google Scholar 

  25. ZHAO Lian, TANG Yi, HU Shi, DENG Dong, YANG Xin. Upper bound analysis of the ultimate pullout capacity of shallow 3-D circular plate anchors based on the nonlinear mohr-coulomb failure criterion [J]. Journal of Central South University, 2018, 25(9): 25: 2272−2288.

    Article  Google Scholar 

  26. ROWE R K, DAVIS E H. The behaviour of anchor plates in sand [J]. Geotechnique, 1982, 32(1): 9–23.

    Article  Google Scholar 

  27. LIU Wen, ZHOU Jian. Partical flow code numerical simulation of extended foundation under the action of uplift loading [J]. Journal of Hydraulic Engineering, 2004, 35(12): 69–76. (in Chinese)

    Google Scholar 

  28. WANG Dong, HU Yu, RANDOLPH M F. Threedimensional large deformation finite-element analysis of plate anchors in uniform clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(2): 355–365.

    Article  Google Scholar 

  29. YU Long, LIU Jun, KONG Xian, HU Yu. Threedimensional numerical analysis of the keying of vertically installed plate anchors in clay [J]. Computers and Geotechnics, 2009, 36(4): 558–567.

    Article  Google Scholar 

  30. SU Fang, LIU Hai, LI Zhou. Analysis of ultimate bearing capacity of plate anchors in clay using a coupled Eulerian-Lagrangian method [J]. Rock and Soil Mechanics, 2016, 37(9): 2728–2736. (in Chinese)

    Google Scholar 

  31. EMIRLER B, BILDIK S, LAMAN M. Numerical investigation of anchor plates in layered soil [J]. International Journal of Material Science & Engineering, 2015, 2(1): 10–15.

    Google Scholar 

  32. HOEK E. Strength of joined rock masses [J]. Geotcehnique, 1983, 33(3): 187–223.

    Article  Google Scholar 

  33. AGAR J G, MORGENSTERN N R, SCOTT J. Shear strength and stress-strain behavior of Athabasca oil sand at elevated temperatures and pressures [J]. Canadian Geotechnical Journal, 1987, 24(1): 1–10.

    Article  Google Scholar 

  34. CHEN W F, LIU X L. Limit analysis in soil mechanics [M]. Amsterdam: Elsevier Science, 1990.

    Google Scholar 

  35. MAKSIMOVIC M. Nonlinear failure envelope for soils [J]. Jour of Geotech Eng, ASCE, 1989, 115(4): 581–586.

    Article  Google Scholar 

  36. BAKER R. Nonlinear Mohr envelopes based on triaxial data [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(5): 498–506.

    Article  Google Scholar 

  37. HOEK E, BRAY J W. Rock slope engineering [M]. London: The Institution of Mining and Metallurgy, 1981.

    Google Scholar 

  38. WANG Hong, LI Shu, WANG Qi, MIAO Su, JIANG Bei. Limit analysis of ultimate pullout capacity of shallow horizontal strip anchor plate based on nonlinear failure criterion [J]. Engineering Mechanics, 2014, 31(2): 131–138. (in Chinese)

    Google Scholar 

  39. ZHANG X J, CHEN W F. Stability analysis of slopes with general nonlinear failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33–50.

    Article  MATH  Google Scholar 

  40. DRESCHER A, CHRISTOPOULOS C. Limit analysis slope stability with nonlinear yield condition [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(3): 341–345.

    Article  Google Scholar 

  41. YANG Xiao, YIN Jian. Slope stability analysis with nonlinear failure criterion [J]. Journal of Engineering Mechanics, ASCE, 2004, 130(3): 267–273.

    Article  Google Scholar 

  42. ZHAO Lian, YANG Feng, ZHANG Ying, DAN Han, LIU Wei. Effects of shear strength reduction strategies on safety factor of homogeneous slope based on a general nonlinear failure criterion [J]. Computers and Geotechnics, 2015, 63: 215–228.

    Article  Google Scholar 

  43. ZHAO Lian, CHENG Xiao, DAN Han, TAN Zu, ZHANG Ying. Effect of vertical earthquake component on the permanent seismic displacement of soil slopes based on the nonlinear Mohr-Coulomb failure criterion [J]. Soil and Foundations, 2017, 57(2): 237–251.

    Article  Google Scholar 

  44. TANG Gao, ZHAO Lian, LI Liang, CHEN Jing. Combined influence of nonlinearity and dilation on slope stability evaluated by upper-bound limit analysis [J]. Journal of Central South University, 2017, 24(7): 1602–1611.

    Article  Google Scholar 

  45. ZHANG Xue. Geotechnical plastic mechanics [M]. Beijing: China Communication Press, 1993. (in Chinese)

    Google Scholar 

  46. FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(4): 665–673.

    Article  Google Scholar 

  47. FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections [J]. International Journal of Solids and Structures, 2010, 47(2): 216–223.

    Article  MATH  Google Scholar 

  48. FRALDI M, GUARRACINO F. Limit analysis of progressive tunnel failure of tunnels in Hoek–Brown rock masses [J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 50(2): 170–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-heng Zhao  (赵炼恒) or Zhi-hong Nie  (聂志红).

Additional information

Foundation item: Project(51478477) supported by the National Natural Science Foundation of China; Project(2016CX012) supported by the Innovation-Driven Project of Central South University, China; Project(2014122006) supported by the Guizhou Provincial Department of Transportation Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Lh., Tan, Yg., Nie, Zh. et al. Variation analysis of ultimate pullout capacity of shallow horizontal strip anchor plate with 2-layer overlying soil based on nonlinear M-C failure criterion. J. Cent. South Univ. 25, 2802–2818 (2018). https://doi.org/10.1007/s11771-018-3954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3954-x

Key words

关键词

Navigation