Skip to main content
Log in

Bidirectional secondary transmissions with energy harvesting in cognitive wireless sensor networks

基于能量收割的认识无线传感网络中次用户双向传输方案的研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks, the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal. In order to address this limitation, a novel cooperative spectrum sharing scheme is proposed, where the secondary transmission is multiplexed with both the primary transmission and the relay transmission. Specifically, the process of transmission is on a three-phase time-switching relaying basis. In the first phase, a cognitive sensor node SU1 scavenges energy from the primary transmission. In the second phase, another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1. In the third phase, the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing. Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals. We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems. Moreover, we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria. An effective algorithm is then presented to solve the optimization problem. Simulation results demonstrate that with the optimized solutions, the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission, as compared with the existing one-directional scheme in the literature.

摘要

在目前基于能量收割的认知无线传感网络中频谱共享方案中, 大多数方案限制了次用户系统仅 能在主用户空闲时或者进行协作传输时才能共享频谱。为了解决这一问题, 本文提出了一种新的协作 频谱共享方案。在此方案中, 次用户系统可以在主用户传输信息时和协作认知传输时均能共享频谱。 具体来说, 整个传输过程按时间切换中继方案可以分为三个阶段。在第一阶段, 一个认知的传感节点 SU1 通过接收主用户发送的能量信号进行能量收割; 在第二阶段, 另一个认知的传感节点SU2 和主用 户发送端同时发送信息给SU1; 在第三阶段, 传感节点SU1 可以通过协助主用户信息传输从而获得频 谱共享的机会。在所有的接收端均采用联合的解码和干扰消除技术来获得所需的信息。通过数学分析, 本文得到主用户系统和次用户系统的中断概率的闭式解。进一步来说, 本文还分析了基于能量收割时 间和功率分配比例的优化问题, 同时相应地提出了一种有效的算法获取优化值。仿真结果表明, 将提 出的优化算法和频谱共享方案结合, 系统的频谱效率较传统的方案有了极大的提高, 同时主用户系统 的传输速率也有了较大的提升。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HU Tao, ZHENG Ming. Intelligent photovoltaic monitoring based on solar irradiance big data and wireless sensor networks [J]. Ad Hoc Networks, 2015, 35(5): 127–136. DOI: 10.1016/j.adhoc.2015.07.004.

    Article  Google Scholar 

  2. HE Bin, LI Yong. Big data reduction and optimization in sensor monitoring network [J]. Journal of Applied Mathematics, 2014, 2014(2): 155–162. DOI: 10.1155/2014/294591.

    Google Scholar 

  3. ROMAN R, ALCARAZ C, LOPEZ J, SKLAVOS N. Key management systems for sensor networks in the context of the Internet of Things [J]. Computers and Electrical Engineering, 2011, 37(2): 147–159. DOI: 10.1016/j.compeleceng.2011.01.009.

    Article  Google Scholar 

  4. MESSIER G, FINVERS I. Traffic models for medical wireless sensor networks [J]. IEEE Communication Letters, 2007, 11(1): 13–15. DOI: 10.1109/LCOMM.2007. 061291.

    Article  Google Scholar 

  5. GOLDSIMITH D, LIAROKAPIS F, KEMP J, MALONE G. Augmented reality environmental monitoring using wireless sensor network [C]//12th International Conference on Information Visualisation. London: IEEE, 2008: 1486–2490. DOI: 10.1109/IV.2008.72.

    Google Scholar 

  6. Federal Communications Commission. Report of the spectrum efficiency working group [R]. Washington D C: FCC, 2002. https://doi.org/www.fcc.gov/sptf/reports.html.

    Google Scholar 

  7. PEHA J. Approaches to spectrum sharing [J]. IEEE Communications Magazine, 2005, 43(2): 10–23. DOI: 10.1109/MCOM.2005.1391490.

    Article  Google Scholar 

  8. MCHENRY M. NSF spectrum occupancy measurements project summary [R]. Vienna: Shared Spectrum Company, 2005. https://doi.org/www.sharedspectrum.com.

    Google Scholar 

  9. LIU Xin, CHEN Kun, YAN Jun. A novel weighed cooperative bandwidth spectrum sensing for spectrum occupancy of cognitive radio network [J]. Journal of Central South University, 2016, 23(7): 1709–1718. DOI: 10.1007/s11771-016-3225-7.

    Article  Google Scholar 

  10. SIMEONE O, STANOJEV L, SAVAZZI S, BAR-NESS Y, SPAGNOLINI U, PICKAOLTZ R. Spectrum leasing to cooperating secondary ad hoc networks [J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 1–11. DOI: 10.1109/JSAC.2008.080118.

    Article  Google Scholar 

  11. ZHENG Gan, SONG Sheng, WONG Kai, OTTERSTEN B. Cooperative cognitive networks: optimal, distributed and low-complexity algorithms [J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2778–2790. DOI: 10.1109/TSP.2013.2257762.

    Article  MathSciNet  MATH  Google Scholar 

  12. REN Ju, ZHANG Yao, YANG Kan, ZHANG Kuan, SHEN Xue Sherman. Exploiting secure and energy-efficient collaborative spectrum sensing for cognitive radio sensor networks [J]. IEEE Transactions on Wireless Communications, 2016, 15(10): 6813–6287. DOI: 10.1109/TWC.2016.2591006.

    Article  Google Scholar 

  13. BUKHARI S H R, REHMANI M R, SIRAJ S. A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks [J]. IEEE Communications Surveys and Tutorials, 2016, 18(2): 924–948. DOI: 10.1109/COMST.2015.2504408.

    Article  Google Scholar 

  14. LU Xiao, WANG Ping, NIYATO D, KIM Dong, HAN Zhu. Wireless networks with RF energy harvesting: A contemporary survey [J]. IEEE Communications Surveys & Tutorials, 2014, 12(2): 757–789. DOI: 10.1109/COMST. 2014.2368999.

    Article  Google Scholar 

  15. BI Su, HO Chin-Keong, ZHANG Rui. Wireless powered communication: opportunities and challenges [J]. IEEE Communications Magazine, 2015, 53(4): 117–125. DOI: 10.1109/MCOM.2015.7081084.

    Article  Google Scholar 

  16. RAVADANEGH S N, OSKUEE M, KARIMI M. Multi-objective planning model for simultaneous reconfiguration of power distribution network and allocation of renewable energy resources and capacitors with considering uncertainties [J]. Journal of Central South University, 2017, 24(8): 1837–1849. DOI: 10.1007/s11771-017–3592-8.

    Article  Google Scholar 

  17. KAMALINEJAD P, MAHAPATRA C, SHENG Zheng, MIRABASI S, LEUUVG U, GUAN Yong. Wireless energy harvesting for the Internet of Things [J]. IEEE Communications Magazine, 2015, 53(6): 102–108. DOI: 10.1109/MCOM.2015.7120024.

    Article  Google Scholar 

  18. SHAIKH F K, ZEADALLY S. Energy harvesting in wireless sensor networks: A comprehensive review [J]. Renewable & Sustainable Energy Reviews, 2016, 55: 1041–1054. DOI: 10.1016/j.rser.2015.11.010.

    Article  Google Scholar 

  19. GUNDUZ D, STAMATIOU K, MICHELUSI N, ZORZI M. Designing intelligent energy harvesting communication systems [J]. IEEE Communications Magazine, 2014, 52(1): 210–216. DOI: 10.1109/MCOM.2014.6710085.

    Article  Google Scholar 

  20. NOBAR S K, MEHR K A, NIYA J M, TAZEHKAND B. Cognitive radio sensor network with green power beacon [J]. IEEE Sensor Journal, 2017, 17(5): 1549–1561. DOI: 10.1109/JSEN.2017.2647878.

    Article  Google Scholar 

  21. HUANG K, LARSSON E. Simultaneous information and power transfer for broadband wireless systems [J]. IEEE Transactions on Signal Processing, 2012, 61(23): 5972–5986. DOI: 10.1109/TSP.2013.2281026.

    Article  MathSciNet  MATH  Google Scholar 

  22. LEE H, SONG C, CHOI S H, LEE I. Outage probability analysis and power splitter designs for SWIPT relaying systems with direct link [J]. IEEE Communications Letters, 2017, 21(3): 648–651. DOI: 10.1109/LCOMM.2016. 2627055.

    Article  Google Scholar 

  23. PARK S, KIM H J, HONG D. Cognitive radio networks with energy harvesting [J]. IEEE Transactions on Wireless Communications, 2013, 12(3): 1386–1397. DOI: 10.1109/TWC.2013.012413.121009.

    Article  Google Scholar 

  24. PARK S, HONG D. Optimal spectrum access for energy harvesting cognitive radio networks [J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 6166–6179. DOI: 10.1109/TWC.2013.103113. 130018.

    Article  Google Scholar 

  25. PARK S, HEO J, KIM B, CHUNG W, WANG H, HONG D. Optimal mode selection for cognitive radio sensor networks with RF energy harvesting [C]//IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Sydney: IEEE, 2012: 2155–2159. DOI: 10.1109/PIMRC.2012.6362711.

    Google Scholar 

  26. ZHANG Yan, HAN Wei, LI Di, ZHANG Ping, CUI Shu. Power versus spectrum 2-D sensing in energy harvesting cognitive radio networks [J]. IEEE Transactions on Signal Processing, 2015, 63(23): 6200–6212. DOI: 10.1109/TSP.2015.2464191.

    Article  MathSciNet  MATH  Google Scholar 

  27. TANG Kun, SHI Rong, DONG Jian. Throughput analysis of cognitive wireless acoustic sensor networks with energy harvesting [J]. Future Generation Computer Systems, 2018, 86: 1218–1227. DOI: 10.1016/j.future.2017.032.

    Article  Google Scholar 

  28. YIN Si, ZHANG Er, QU Zhao, YIN Liang, LI Shu. Optimal cooperation strategy in cognitive radio systems with energy harvesting [J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 4693–4707. DOI:10.1109/TWC.2014.2322972.

    Article  Google Scholar 

  29. WANG Zi, CHEN Zhi, XIA Bin, LUO Ling, ZHOU Jian. Cognitive relay networks with energy-harvesting and information transfer: design, analysis, and optimization [J]. IEEE Transactions on Wireless Communications, 2015, 14(4): 2562–2576. DOI: 10.1109/TWC.2015.2504581.

    Article  Google Scholar 

  30. XU Wen, LIU Zhi, LI Sheng, LIN Jia. Two-plus-one cognitive cooperation based on energy harvesting and spatial multiplexing [J]. IEEE Transactions on Vehicular Technology, 2017, 99: 1–4. DOI: 10.1109/TVT. 2017.2665518.

    Google Scholar 

  31. JIANG Li, TIAN Hui, QIN Cheng, GJESSING S, ZHANG Yan. Secure beamforming in wireless-powered cooperative cognitive radio networks [J]. IEEE Communications Letters, 2016, 20(3): 522–525. DOI: 10.1109/LCOMM.2016. 2514353.

    Article  Google Scholar 

  32. GRADSHTEYN S, RYZHIK I M. Table of integral, series, and products [M]. 7th ed. New York, NY, USA: Academic, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-tai Lei  (雷文太).

Additional information

Foundation item: Project(61201086) supported by the National Natural Science Foundation of China; Project(201506375060) supported by the China Scholarship Council; Project(2013B090500007) supported by Guangdong Provincial Science and Technology Project, China; Project(2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry, Education and Research, China; Project(2017GK5019) supported by 2017 Hunan-Tech & Innovation Investment Project, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, K., Shi, Rh., Zhang, My. et al. Bidirectional secondary transmissions with energy harvesting in cognitive wireless sensor networks. J. Cent. South Univ. 25, 2626–2640 (2018). https://doi.org/10.1007/s11771-018-3941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3941-2

Key words

关键词

Navigation