Skip to main content
Log in

Particle deposition in ventilation duct with convex or concave wall cavity

带内凸肋板和外凹槽的通风管道内颗粒物的沉降规律研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A numerical study is carried out on particle deposition in ducts with either convex or concave wall cavity. Results show that, if compared with smooth duct, particle deposition velocities (Vd+) increase greatly in ducts with wall cavities. More specifically, for τ+<1, Vd+ increase by about 2–4 orders of magnitude in the cases with the convex and concave wall cavities; for τ+>1, Vd+ grows relatively slower. Enhancement of particle deposition with wall cavities is caused by the following mechanisms, i.e., interception by the wall cavities, expanded deposition area, and the enhanced flow turbulence. In general, addition of wall cavities is contributive for particle deposition, so it provides an efficient approach to remove particles, especially with small size, e.g., PM2.5. Moreover, the convex wall cavity leads to a larger increment of Vd+ than the concave wall cavity. However, taking pressure loss into account, though Vd+ is relatively lower, duct with the concave wall cavity is more efficient than that with the convex wall cavity.

摘要

本文采用数值模拟手段对带内凸肋板、外凹槽的通风管内颗粒物的沉降规律进行了研究。对于 0.1~50 μm 粒径的颗粒物, 采用修正的RSM 和DPM 模型能准确地模拟通风管道中颗粒物的沉降特性。 与光滑管道相比可知, 内凸、外凹槽通风管道中颗粒沉积速度(Vd+)随弛豫时间(τ+)或颗粒物粒径的增大而大幅度提高; 更具体来讲, 在τ+<1 的湍流扩散区和涡扩散碰撞区, Vd+ 可以增强 2~4 个数量级 并在τ+≈0.3 (dp=2 μm)时达到最大值, 增设凸肋板和外凹槽能分别使颗粒物沉降能量增强7770 和1320 倍。在τ+>1 的惯性力区, 颗粒物的运动主要受惯性力主导, Vd+ 增幅较缓。总体而言, 增设内凸、外 凹槽可以强化颗粒物的沉积, 且对小粒径颗粒物作用更显著, 因此, 这为减少PM2.5 (dpm>2.5 μm)提 供了一种好的选择。此外, 相比于外凹槽, 增设凸肋板的通风管道近壁区空气流动更加复杂, 产生更 高的湍动能, 有利于颗粒物沉积, Vd+ 增幅更大。然而, 若考虑压力损失, 带有外凹槽的通风管道虽 然Vd+ 相对较低, 但效率更高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POPE C A, BURNETT R T, THUN M J, CALLE E E, KREWSKI D, ITO K, THURSTON G D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution [J]. Journal American Medical Association, 2002, 287: 1132–1141.

    Article  Google Scholar 

  2. LAI A C K. Particle deposition indoors: A review [J]. Indoor Air, 2002, 12: 211–214.

    Article  Google Scholar 

  3. BOUILLY J, LIMAM K, BÉGHEIN C, ALLARD F. Effect of ventilation strategies on particle decay rates indoors: An experimental and modelling study [J]. Atmospheric Environment, 2005, 39: 4885–4892.

    Article  Google Scholar 

  4. LAI A C K, BYRNE M A, GODDARD A J H. Measured deposition of aerosol particles on a two-dimensional ribbed surface in a turbulent duct flow [J]. Journal of Aerosol Science, 1999, 30: 1201–1214.

    Article  Google Scholar 

  5. LAI A C K, BYRNE M A, GODDARD A J H. Enhanced particle loss in ventilation duct with ribbed surface [J]. Building and Environment, 2000, 35: 425–432.

    Article  Google Scholar 

  6. BARTH T, REICHE M, BANOWSKI M, OPPERMANN M, HAMPEL U. Experimental investigation of multilayer particle deposition and resuspension between periodic steps in turbulent flows [J]. Journal of Aerosol Science, 2013, 64: 111–124.

    Article  Google Scholar 

  7. SIPPOLA M R, NAZAROFF W W. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts [J]. Aerosol Science Technology, 2004, 38(9): 914–925.

    Article  Google Scholar 

  8. BAGHDAR HOSSEINI S, HAGHIGHI KHOSHKHOO R, MALABAD S M. Experimental and numerical investigation on particle deposition in a compact heat exchanger [J]. Applied Thermal Engineering, 2017, 115(25): 406–417.

    Article  Google Scholar 

  9. ZHANG H, GOODARZL A. Aerosol particle transport and deposition in vertical and horizontal turbulent duct flows [J]. Journal Fluid Mechanics, 2000, 406: 55–80.

    Article  Google Scholar 

  10. MATIDA E A, FINLAY W H, LANGE C F, GRGIC B. Improved numerical simulation of aerosol deposition in an idealized mouth–throat [J]. Journal of Aerosol Science, 2004, 35(1): 1–19.

    Article  Google Scholar 

  11. BEGHEIN C, JIANG Y, CHEN Q Y. Using large eddy simulation to study particle motions in a room [J]. Indoor Air, 2005, 15(4): 281–290.

    Article  Google Scholar 

  12. DRITSELIS C D. Numerical study of particle deposition in a turbulent channel flow with transverse roughness elements on one wall [J]. International Journal Multiphase Flow, 2017, 91: 1–18.

    Article  MathSciNet  Google Scholar 

  13. LO IACONO G, TUCKER P G, REYNOLDS A M. Predictions for particle deposition from LES of ribbed channel flow [J]. International Journal Heat Fluid Flow, 2005, 26(4): 558–568.

    Article  Google Scholar 

  14. WANG Y. On the effect of anisotropy on the turbulent dispersion and deposition of small particles [J]. International Journal Multiphas Flow, 1999, 25: 551–558.

    Article  MATH  Google Scholar 

  15. ZHANG Z, CHEN Q. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces [J]. Atmospheric Environment, 2007, 41: 5236–5248.

    Article  Google Scholar 

  16. ZHANG Z, CHEN Q. Prediction of particle deposition onto indoor surfaces by CFD with a modified Lagrangian method [J]. Atmospheric Environment, 2009, 43(2): 319–328.

    Article  Google Scholar 

  17. HE C, AHMADI G. Particle deposition in a nearly developed turbulent duct flow with electrophoresis [J]. Journal of Aerosol Science, 1999, 30(6): 739–758.

    Article  Google Scholar 

  18. MEHEL A, TANIÈRE A, OESTERLÉ B, FONTAINE J R. The influence of an anisotropic Lagrangian dispersion model on the prediction of micro-and nano-particle deposition in wall-bounded turbulent flows [J]. Journal of Aerosol Science, 2010, 41(8): 729–744.

    Article  Google Scholar 

  19. TIAN L, AHMADI G. Particle deposition in turbulent duct flows-comparisons of different model predictions [J]. Journal of Aerosol Science, 2007, 38: 377–397.

    Article  Google Scholar 

  20. ZHANG J, LI A. CFD simulation of particle deposition in a horizontal turbulent duct flow [J]. Chemical Engineering Research Design, 2008, 86(1): 95–106.

    Article  MathSciNet  Google Scholar 

  21. PARKER S, FOAT T, PRESTON S. Towards quantitative prediction of aerosol deposition from turbulent flows [J]. Journal of Aerosol Science, 2008, 39(2): 99–112.

    Article  Google Scholar 

  22. GAO N, NIU J, HE Q, ZHU T, WU J. Using RANS turbulence models and Lagrangian approach to predict particle deposition in turbulent channel flows [J]. Building Environment, 2012, 48: 206–214.

    Article  Google Scholar 

  23. LECRIVAIN G, SEVAN D M, THOMAS B, HAMPEL U. Numerical simulation of multilayer deposition in an obstructed channel flow [J]. Advance Powder Technology, 2014, 25(1): 310–320.

    Article  Google Scholar 

  24. LU H, LU L. Numerical investigation on particle deposition enhancement in duct air flow by ribbed wall [J]. Building Environment, 2015, 85: 61–72.

    Article  Google Scholar 

  25. LU H, LU L. A numerical study of particle deposition in ribbed duct flow with different rib shapes [J]. Building Environment, 2015, 94: 43–53.

    Article  Google Scholar 

  26. LU H, LU L. Effects of rib spacing and height on particle deposition in ribbed duct air flows [J]. Building Environment, 2015, 92: 317–327.

    Article  Google Scholar 

  27. LU H, LU L. CFD investigation on particle deposition in aligned and staggered ribbed duct air flows [J]. Applied Thermal Engineering, 2016, 93: 697–706.

    Article  Google Scholar 

  28. WANG F, ZHANG E, WANG J. A study of particle deposition in ventilation ducts with convex or con-cave wall cavity [J]. Procedia Engineering, 2017, 205: 3285–3292.

    Article  Google Scholar 

  29. RAN J, LI L, DU X, WANG R, PAN W. Numerical investigations on characteristics of methane catalytic combustion in micro-channels with a concave or convex wall cavity [J]. Energy Conversion Management, 2015, 97: 188–195.

    Article  Google Scholar 

  30. ANSARIPOUR M, ABDOLZADEH M, SARGAZIZADEH S. Computational modeling of particle transport and distribution emitted from a laserjet printer in a ventilated room with different ventilation configurations [J]. Applied Thermal Engineering, 2016, 103: 920–933.

    Article  Google Scholar 

  31. ZHOU J, ZHANG J. Numerical investigation of particle deposition on converging slot-hole film-cooled wall [J]. Journal of Central South University, 2017, 24(12): 2819–2828.

    Article  Google Scholar 

  32. FLUENT Inc. FLUENT 14.0 user’s guide [M]. Lebanon, NH, 2011.

    Google Scholar 

  33. KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number [J]. Journal Fluid Mechanics, 1987, 177: 133–166.

    Article  MATH  Google Scholar 

  34. KVASNAK W, AHMADI G, BAYER R, GAYNES M. Experimental investigation of dust particle deposition in a turbulent channel flow [J]. Journal of Aerosol Science, 1993, 24(6): 795–815.

    Article  Google Scholar 

  35. SEHMEL G A. Particle resuspension from an asphalt road caused by car and truck traffic [J]. Atmospheric Environment, 1973, 7(3): 291–309.

    Article  Google Scholar 

  36. WOOD N B. A simple method for the calculation of turbulent deposition to smooth and rough surfaces [J]. J Aerosol Sci, 1981, 12: 275–290.

    Article  Google Scholar 

  37. MONTGOMERY T L, CORN M. Aerosol deposition in a pipe with turbulent airflow [J]. Journal of Aerosol Science, 1970, 1(3): 185–194.

    Article  Google Scholar 

  38. SEHMEL G A. Aerosol deposition from turbulent airstreams in vertical conduits [R]. Richland, Washington: Battelle Northwest Lab, BNWL-578, 1968.

    Book  Google Scholar 

  39. LEE A, AHMADI G, BAYER R G, GAYNES M A. Aerosol particle deposition in an obstructed turbulent duct flow [J]. J Aerosol Sci, 1994, 25: 91–112.

    Article  Google Scholar 

  40. LIU B Y H, AGARWAL J K. Experimental observation of aerosol deposition in turbulent flow [J]. J Aerosol Sci, 1974, 5: 145–155.

    Article  Google Scholar 

  41. WELLS A C, CHAMBERLAIN A C. Transport of small particles to vertical surfaces [J]. British Journal of Applied Physics, 1967, 18: 1793–1799.

    Article  Google Scholar 

  42. FRIEDLANDER S K, JOHNSTONE H E. Deposition of suspended particles from turbulent gas streams [J]. Industrial and Engineering Chemistry, 1957, 49: 1151–1156.

    Article  Google Scholar 

  43. POSTMA A K, SCHWENDIMAN L C. Studies in micrometrics: Particle deposition in conduits as a source of error in aerosol sampling [R]. Richland, Washington: Hanford Lab, HW-65308, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-fei Wang  (王飞飞).

Additional information

Foundation item: Project(51506069) supported by the National Natural Science Foundation of China; Project(2016YFB0600605) supported by the National Key Research and Development Program of China; Projects(HUST2016YXMS286, HUST2015061) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ff., Zhang, Es., Xu, Xh. et al. Particle deposition in ventilation duct with convex or concave wall cavity. J. Cent. South Univ. 25, 2601–2614 (2018). https://doi.org/10.1007/s11771-018-3939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3939-9

Key words

关键词

Navigation