Skip to main content
Log in

Evolution of diagenetic fluid of ultra-deep Cretaceous Bashijiqike Formation in Kuqa depression

库车坳陷超深层白垩系巴什基奇克组致密砂岩成岩流体演化研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Diagenetic fluid types of the Cretaceous Bashijiqike formation are restored based on the analysis of petrographic, electron microprobe composition, inclusions homogenization temperature, salinity and vapor composition and laser carbon and oxygen isotope of diagenetic mineral, and regional geological background. Diagenetic fluid evolution sequence is analyzed on this basis. The crystalline dolomite cement has a low concerntration of Sr, high concerntration of Mn and higher carbon isotope, showing that the crystalline dolomite is affected by meteoric fresh water, associated with the tectonic uplift of late Cretaceous. Similar δ13CPDB, negative transfer of δ18OPDB and the differentiation of the concerntration of Fe and Mn indicate that the diagenetic fluid of the vein dolomite cement is homologous with the diagenetic fluid of the crystalline dolomite cement, temperature and depth are the dominant factors of differential precipitation between these two carbonate cements. Anhydrite cements have high concerntration of Na, extremely low concerntration of Fe and Mn contents. Based on these data, anhydrite cements can be thought to be related to the alkaline fluid overlying gypsum-salt layer produced by dehydration. The barite vein has abnormally high concerntration of Sr, ultra-high homogenization temperature and high-density gas hydrocarbon inclusions, which is speculated to be the forward fluid by intrusion of late natural gas. Coexistence of methane inclusions with CO2 gas proves existence of acid water during the accumulation of natural gas in the late stages. Therefore, the alkaline environment and associated diagenesis between the meteoric fresh water in epidiagentic stage and carbonic acid in the late diagenesis have dominated the process of diagenesis and reservoir, the secondary porosity and fracture zone formed by gas accumulation is a favorable play for the exploration of ultra-deep reservoirs.

摘要

为了恢复超深层白垩系巴什基奇克组成岩流体类型与演化序列, 利用成岩矿物岩相学、 电子探针成分、 包裹体均一温度-盐度与气相成分、 激光碳氧同位素等技术手段, 结合区域地质背景, 确定了巴什基奇克组成岩流体演化序列。 第II期连晶状白云石胶结物表现出低 SrO、 高 MnO 含量和较重 C 同位素值, 证实了其形成受大气淡水的影响, 和晚白垩世构造抬升作用影响。 相似的 δ13C 值, 向负值迁移的 δ18O 值与 Fe、 Mn 元素分异特征, 说明脉状白云石胶结物与连晶状白云石胶结物沉淀的成岩流体具有继承性, 均具有大气水的地球化学标记, 成岩环境具有封闭性, 温度和埋深是这两阶段成岩环境变化的主导因素。 硬石膏的岩相学证据及其具有较高 Na、 极低 Fe 与 Mn 元素含量等特征, 表明硬石膏的沉淀流体与上覆膏盐层脱出碱性流体有关。 重晶石脉具有高异常 Sr 含量、 超高均一温度特征和高密度气烃包裹体, 推测是晚期天然气充注的前锋流体; 与甲烷包裹体共生 CO2 气体证实了晚期天然气成藏过程中存在酸性流体。 处于表生期大气水和晚期碳酸流体之间的碱性环境成岩作用控制了巴什基奇克组成岩-成储过程, 天然气成藏阶段形成的次生孔缝发育带是超深层储集层勘探的有利区带。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SUN Long-de, ZOU Cai-neng, ZHU Ru-kai, ZHANG Yun-hui, ZHANG Shui-chang, ZHANG Bao-ming, ZHU Guang-you, GAO Zhi-yong. Formation, distribution and potential of deep hydrocarbon resources in China [J]. Petroleum Exploration and Development, 2013, 40(6): 687–695. DOI:https://doi.org/10.11698/PED.2013.06.01.

    Article  Google Scholar 

  2. ZHANG Rong-hu, YANG Hai-jun, WANG Jun-peng, SHOU Jian-feng, ZENG Qing-lu, LIU Qun. The formation mechanism and exploration significance of ultra-deep, low-porosity and tight sandstone reservoirs in Kuqa depression, Tarim Basin [J]. Acta Petrologica Sinica, 2014, 35(6): 1058–1062. DOI: https://doi.org/10.7623/syxb201406003. (in Chinese)

    Article  Google Scholar 

  3. DUTTON S P, LOUCKS R G. Reprint of: Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultra-deep (200–6700 m) burial, Gulf of Mexico Basin, USA [J]. Marine & Petroleum Geology, 2010, 27(8): 1775–1787. DOI:https://doi.org/10.1016/j.marpetgeo.2009.08.008.

    Article  Google Scholar 

  4. HELGESON H C, KNOX A M, OWENS C E, SHOCK E L. Petroleum, oil field waters, and authigenic mineral assemblages are they in metastable equilibrium in hydrocarbon reservoirs? [J] Geochimica Et Cosmochimica Acta, 1993, 57(14): 3295–3339. DOI: https://doi.org/10.1016/0016-7037(93)90541-4.

    Article  Google Scholar 

  5. HAN Deng-lin, LI Zhong, HAN Yin-xue, LIU Jia-qing, LI Wei-feng, LI Sha-lan. Sealing feature of burial diagenesis environment and its controls on differentiation of cementation in Cretaceous sandstone reservoir in Kelasu structure zone, Kuqa depression [J]. Acta Petrologica Sinica, 2009, 25(10): 2351–2362. (in Chinese).

    Google Scholar 

  6. MORAD S, KETZER J M, DEROS L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins [J]. Sedimentology, 2000, 47(s1): 95–120. DOI: https://doi.org/10.1046/j.1365-3091.2000.00007.x.

    Article  Google Scholar 

  7. LI Ling, Delaqiati, CHEN Chun-yong, TAN Qiang, FENG Wei. Diagenetic evolution of Wutonggou reservoir in southeastern margin of beisantai swell, Junggar basin [J]. Xinjiang Petroleum Geology, 2015, 36(4): 409–414. DOI: https://doi.org/10.7657/XJPG201406. (in Chinese)

    Google Scholar 

  8. STOESSELL R K, PITTMAN E D. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic acids and anions [J]. Aapg Bulletin, 1990, 74(12): 1795–1805. https://doi.org/www.researchgate.net/publication/239916514.

    Google Scholar 

  9. SU Ao, DU Jiang-min, CHEN Hong-han, YU Yan, LEI Ming-zhu. Diagenetic fluid type and activity history of controlling the development of abnormal pore zone: Taking the north margin of Baodao Sag, Qiongdongnan Basin as an example [J]. Natural Gas Geoscience, 2016, 27(10): 1837–1839. DOI: https://doi.org/10.11764/j.issn.1672-1926.2016.10.1837. (in Chinese)

    Google Scholar 

  10. ZHU Hai-hua, ZHONG Da-kang, YAO Jing-li, SUN Hai-tao, NIU Xiao-bing, LIANG Xiao-wei, YOU Yuan, LI Xin. Alkaline diagenesis and its effects on reservoir porosity: A case study of Upper Triassic Chang7 tight sandstones in Ordos Basin, NW China [J]. Petroleum Exploration and Development, 2015, 42(1): 51–58. DOI: https://doi.org/10.11698/PED.2015.01.06.

    Article  Google Scholar 

  11. DOU Wen-chao, LIU Luo-fu, WU Kang-juu, XU Zheng-jian, FENG Xu. Origin and significance of secondary porosity: A case study of upper Triassic tight sandstones of Yanchang formation in ordos basin, China [J]. Journal of Petroleum Science & Engineering, 2017, 149: 485–496. DOI: https://doi.org/10.1016/j.petrol.2016.10.057.

    Article  Google Scholar 

  12. DING Xiao-qi, HAN Mei-mei, ZHANG Shao-nan, FU Mei-yan, WAN You-li. Roles of meteoric water on secondary porosity of siliciclastic reservoirs [J]. Geological Review, 2011, 60(1): 148–156. DOI: https://doi.org/10.16509/j.greview.2014.01.003. (in Chinese)

    Google Scholar 

  13. LU Zi-ye, CHEN Hong-han, FENG Yong, WU You, XIONG Wan-lin, SHANG Pei. Evidences of multi-episodically paleo-fluid flow and its significance in ordovician of guchengxu upshift, tarim basin [J]. Earth Science, 2015, 40(9): 1530–1532. DOI: https://doi.org/10.3799/dqke.2015.137. (in Chinese)

    Google Scholar 

  14. BIEHL B C, REUNING L, SCHOENHERR J, LEWIN A, LEUPOLD M, KUKLA P A. Do CO2-charged fluids contribute to secondary porosity creation in deeply buried carbonates? [J]. Marine & Petroleum Geology, 2016, 76: 176–186. DOI: https://doi.org/10.1016/j.marpetgeo.2016.05.005.

    Article  Google Scholar 

  15. WEEDMAN S D, BRANTLEY S L, SHIRAKI R, POULSON S R. Diagenesis, compaction, and fluid chemistry modeling of a sandstone near a pressure seal: Lower tuscaloosa formation, gulf coast [J]. Aapg Bulletin, 1996, 80(7): 1045–1064. DOI: https://doi.org/10.1306/64ED8C8C-1724-11D7-86450.

    Google Scholar 

  16. YANG Zhi, ZOU Cai-neng, HE Sheng, HE Zhi-liang, WU Heng-zhi, CAO Feng, LI Qi-yan, MENG Xian-long, WANG Fu-rong, XIAO Qi-lin. Formation mechanism of carbonate cemented zones adjacent to the top over-pressured surface in the central Junggar Basin, NW China [J]. Science China: Earth Science, 2010, 40(4): 444–448. DOI: https://doi.org/10.1007/s11430-010-0037-8. (in Chinese)

    Google Scholar 

  17. RASMUSSEN B, GLOVER J E. Fluid evolution interpreted from diagenetic assemblages and salinity data in permotriassic sandstone, northern perth basin, western australia [J]. Journal of Sedimentary Research, 1996, 66(3): 492–500. DOI: https://doi.org/10.1306/D426838D-2B26-11D7-8648000102C1865D.

    Google Scholar 

  18. GLASMANN J R. Geochemical evidence for the history of diagenesis and fluid migration: brent sandstone, heather field, north sea [J]. Clay Minerals, 1989, 24(2): 255–284. DOI: https://doi.org/10.1180/claymin.1989.024.2.10

    Article  Google Scholar 

  19. ZHU Guang-you, ZHANG Shui-chang, CHEN Ling, YANG Hai-jun, YANG Wen-jing, ZHANG Bin, SU Jin. Coupling relationship between natural gas charging and deep sandstone reservoir formation: A case from the Kuqa Depression, Tarim Basin [J]. Petroleum Exploration and Development, 2009, 36(3): 347–355. DOI: 1000-0747(2009)3-0347-11.

    Article  Google Scholar 

  20. SHI Ze-jin, WANG Yong, TIAN Ya-ming, WANG Chang-cheng. Cementation and diagenetic fluid of algal dolomites in the Sinian Dengying Formation in southeastern Sichuan Basin [J]. Science China: Earth Science, 2013, 43(2): 317–323. DOI: https://doi.org/10.1007/s11430-012-4541-x.

    Google Scholar 

  21. ZHANG Jun-tao, JIN Xiao-hui, LI Shu-jun, LI Wei, SU Yi-pu. Types and origin of pore-fillings from the 5th member of the Ordovician Majiagou Formation in Ordos Basin [J]. Oil & Gas Geology, 2016, 37(5): 686–688. DOI: https://doi.org/10.11743/ogg20160508. (in Chinese)

    Google Scholar 

  22. WANG Yang, LIU Jing, WANG Jian-guo, SHI Kai-bo, WANG Chao, NIU Yu-jie, SHAO Guang-qiang, LIU Bo. Major controlling factors for the formation of inter-layer of Donghe sandstone of Donghe1 reservoir in Tarim Basin and its fluid source [J]. Acta Petrolei Sinica, 2015, 36(2): 177–180. DOI: https://doi.org/10.7623/syxb201505. (in Chinese)

    Google Scholar 

  23. YOU Li, LI Cai, ZHANG Ying-zhao, GAN Jun, LIU Jing-huan. Distribution and genetic mechanism of carbonate cements in the Zhuhai formation reservoirs in Wenchang a sag, pear river mouth basin [J]. Oil & Gas Geology, 2012, 33(6): 886–888. https://doi.org/lib.cqvip.com/QK/95357X/201206/44479640.html. (in Chinese)

    Google Scholar 

  24. PUDLO D, RENBACH V, ALBRECHT D, GANZER L, GERNERT U, WIENAND J, KOHIHEPP B, GAUPP R. The impact of diagenetic fluid-rock reactions on rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany) [J]. Environmental Earth Sciences, 2012, 67(2): 369–384. DOI: https://doi.org/10.1007/s12665-012-1723-y.

    Article  Google Scholar 

  25. BOOLER J, TUCKER M E. Distribution and geometry of facies and early diagenesis: The key to accommodation space variation and sequence stratigraphy: Upper cretaceous congost carbonate platform, Spanish Pyrenees [J]. Sedimentary Geology, 2002, 146(3): 225–247. DOI: https://doi.org/10.1016/S0037-0738(01)00120-8.

    Article  Google Scholar 

  26. TAYLOR K G, GAWTHORPE R L, FANNON-HOWELL S. Basin-scale diagenetic alteration of shoreface sandstones in the Upper Cretaceous Spring Canyon and Aberdeen Members, blackhawk formation, book Cliffs, Utah [J]. Sedimentary Geology, 2004, 172(1, 2): 99–115. DOI: https://doi.org/10.1016/j.sedgeo.2004.08.001.

    Article  Google Scholar 

  27. BEITLER B, PARRY W T, CHAN M A. Fingerprints of fluid flow: Chemical diagenetic history of the jurassic navajo sandstone, southern Utah, USA. [J]. Journal of Sedimentary Research, 2005, 75(4): 547–561. DOI: https://doi.org/10.2110/jsr.2005.045.

    Article  Google Scholar 

  28. LUO Jing-lan, MORAD S, ZHANG Xiao-li, YAN Shi-ke, WU Fu-li, LI Yu-hong, XUE Jun-min. Reconstruction of the diagenesis of the fluvial-lacustrinedeltaic sandstones and its influence on the reservoir quality evolution [J]. Science China Earth Sciences, 2002, 45(7): 616–634. DOI: https://doi.org/10.1360/02yd9063.

    Article  Google Scholar 

  29. SCHNEIDER J, BAKKER R J, BECHSTDT T, LITTKE R. Fluid evolution during burial diagenesis and subsequent orogenetic uplift: The la vid group (cantabrian zone, northern spain) [J]. Journal of Sedimentary Research, 2008, 78(3, 4): 282–300. DOI: https://doi.org/10.2110/jsr.2008.032.

    Article  Google Scholar 

  30. BJØRLYKKE K, JAHREN J. Open closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs [J]. Aapg Bulletin, 2012, 96(12): 2193–2214. DOI: https://doi.org/10.1306/04301211139.

    Article  Google Scholar 

  31. LI Zhong, HAN Deng-lin, SHOU Jian-feng. Diagenesis systems and their spatio-temporal attributes in sedimentary basins [J]. Acta Petrologica Sinica, 2006, 22(8): 2154–2160. https://doi.org/www.researchgate.net/publication/286386037. (in Chinese)

    Google Scholar 

  32. CAI Chun-fang, MEI Bo-wen, MA Ting, ZHAO Hong-jing, FANG Xiao-lin. The Source, distribution of organic acids in oilfield waters and their effect on mineral diagenesis in Tarim Basin [J]. Acta Sedimentological Sinica, 1997, 15(3): 103–104. DOI: https://doi.org/10.14027/j.cnki.cjxb.1997.03.019. (in Chinese)

    Google Scholar 

  33. PAN Rong, ZHU Xiao-min, LIU Fen, LI Yong, ZHANG Jian-feng. Cretaceous diagenesis and its control on reservoir in Kelasu structure zone, kuqa depression [J]. Acta Sedimentological Sinica, 2014, 32(5): 973–978. https://doi.org/www.cjxb.ac.cn/en/y2014/v32/i5/973. (in Chinese)

    Google Scholar 

  34. LAI Jin, WANG Gui-wen, CHAI Yu, RAN Ye, ZHANG Xiao-tao. Depositional and diagenetic controls on pore structure of tight gas sandstone reservoirs: Evidence from lower cretaceous bashijiqike formation in kelasu thrust belts, Kuqa Depression in Tarim Basin of West China [J]. Resource Geology, 2015, 65(2): 55–75. DOI: https://doi.org/10.1111/rge.12061.

    Article  Google Scholar 

  35. WANG Jun-peng, ZHANG Rong-hu, ZHAO Ji-long, WANG Ke, WANG Bo, ZENG Qing-lu, LIU Chun. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir: Taking Keshen Gas field in Tarim Basin, NW China example [J]. Natural Gas Geoscience, 2014, 25(11): 1735–1738. DOI: https://doi.org/10.11764/j.issn.1672-1926.2014.11.1735. (in Chinese)

    Google Scholar 

  36. YE Ying, SHEN Zhong-yue, ZHENG Li-bo, WANG Huai-zhao, FANG Da-jun. Diagenetic albitization in the Mesozoic and Cenozoic reservoir sandstones from Kuche Depression, North Tarim, Xinjiang, China [J]. Geological Journal of China Universities, 1999, 5(3): 251–259. DOI:https://doi.org/10.16108/j.issn1006-7493.1999.03.002. (in Chinese)

    Google Scholar 

  37. STORVOLL V, BJØRLYKKE K, KARLSEN D, SAIGAL G. Porosity preservation in reservoir sandstones due to grain-coating illite: A study of the jurassic garn formation from the kristin and lavrans fields, offshore mid-norway [J]. Marine & Petroleum Geology, 2002, 19(6): 767–781. DOI: https://doi.org/10.1016/S0264-8172(02)00035-1.

    Article  Google Scholar 

  38. ZHU Li-fen, CHEN Hong-han, FENG Yong. Diagenetic environments of Ordovician carbonate rocks in Yuqi area, northern Tarim Basin: Evidence from fluid inclusion analysis [J]. Lithologic Reservoirs, 2013, 25(4): 42–43. https://doi.org/lib.cqvip.com/QK/88054A/201304/46667062.html. (in Chinese).

    Google Scholar 

  39. MU Na-na, FU Yun-jiao, SCHULZ Hans-Martin, BERK W V. Authigenic albite formation due to water-rock interactions-case study: Magnus oilfield (UK, Northern North Sea) [J]. Sedimentary Geology, 2016, 331: 30–41. DOI: https://doi.org/10.1016/j.sedgeo.2015.11.002.

    Article  Google Scholar 

  40. SPŐTL C, LONGSTAFFE F J, RAMSEYER K, RŰDINGER B. Authigenic albite in carbonate rocks a tracer for deep-burial brine migration? [J]. Sedimentology, 2010, 46(4): 649–666. DOI: https://doi.org/10.1046/j.1365-3091.1999.00237.x

    Article  Google Scholar 

  41. GOLDSTEIN R H. Fluid inclusions in sedimentary and diagenetic systems [J]. Lithos, 2001, 55(1): 159–193. DOI: https://doi.org/10.1016/S0024-4937(00)00044-X.

    Article  Google Scholar 

  42. NEDKVITNE T, KARLSEN D A, BJØRLYKKE K, LARTER S R. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula field, North Sea [J]. Marine & Petroleum Geology, 1993 10(3): 255–270. DOI: https://doi.org/10.1016/0264-8172(93)90108-5.

    Article  Google Scholar 

  43. HASZELDINE R S, SAMSON I M, CORNFORD C. Dating diagenesis in a petroleum basin, a new fluid inclusion method [J]. Nature, 1984, 307(5949): 354–357. DOI: https://doi.org/10.1038/307354a0.

    Article  Google Scholar 

  44. WANG Zhao-ming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa depression, Tarim Basin [J]. Natural Gas Geoscience, 2014, 25(2): 153–163. DOI: https://doi.org/10.11764/j.issn.1672-1926.2014.02.0153. (in Chinese)

    Google Scholar 

  45. MAO Ya-kun, ZHONG Da-kang, NENG Yuan, ZHANG Chun-wei, LIU Yun-long, WANG Ai, HU Xiao-lin. Fluid inclusion characteristics and hydrocarbons accumulation of the Cretaceous reservoirs in Kuqa foreland thrust belt, Tarim basin, Northwest China [J]. Journal of China University of Mining & Technoligy, 2015, 44(6): 1036–1038. DOI: https://doi.org/10.13247/j.cnki.jcumt.000319. (in Chinese)

    Google Scholar 

  46. FENG Song-bao, XU Wen-ming, DUN Ya-peng. Fluid inclusion characteristics of reservoirs in Kelasu tectonic zone of Kuqa Depression and its accumulation information [J]. Petroleum geology & Experiment, 2014, 36(2): 214–216. DOI: https://doi.org/10.1178/sysydz201402211. (in Chinese)

    Google Scholar 

  47. GEORGE S C, VOLK H, AHMED M. Geochemical analysis techniques and geological applications of oil-bearing fluid inclusions,with some australian case studies [J]. Journal of Petroleum Science & Engineering, 2007, 57(1): 119–138. DOI: https://doi.org/10.1016/j.petrol.2005.10.010.

    Article  Google Scholar 

  48. HANSEN S B, BERG R W, STENBY E H. Raman spectroscopic studies of methane-ethane mixtures as a function of pressure [J]. Applied Spectroscopy, 2001, 55(6): 745–749. DOI: https://doi.org/10.1366/0003702011952442.

    Article  Google Scholar 

  49. LU Wan-jun, CHOU I-ming, BURRUSS R C, SONG Yu-cai. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured raman shifts [J]. Geochimica Et Cosmochimica Acta, 2007, 71(16): 3969–3978. DOI:https://doi.org/10.1016/j.gca.2007.06.004.

    Article  Google Scholar 

  50. YU Zhi-chao, LIU Ke-yu, ZHAO Meng-jun, LIU Shao-bo, ZHUO Qin-gong, LU Xue-song. Characterization of diagenesis and the petroleum charge in kela 2 gas field, kuqa depression, tarim basin [J]. Earth Science, 2016, 41(3): 533–545. DOI: https://doi.org/10.3799/dqkx.2016.044. (in Chinese)

    Google Scholar 

  51. BODNAR R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions [J]. Geochimica Et Cosmochimica Acta, 1993, 57(3): 683–684. DOI: https://doi.org/10.1016/0016-7037(93)90378-A

    Article  Google Scholar 

  52. FALL A, EICHHUBL P, CUMELLA S P, BODNAR R J, LAUBACH S E, BECKER S P. Testing the basin-centered gas accumulation model using fluid inclusion observations: Southern piceance basin, Colorado [J]. Aapg Bulletin, 2012, 96(12): 2297–2318. DOI:https://doi.org/10.1306/05171211149.

    Article  Google Scholar 

  53. JIN Qiang, KANG Xun, TIAN Fei. Genesis of chemical fillings in fractures-caves in paleo-karst runoff zone in Ordovician and their distributions in Tahe oilfield, Tarim Basin [J]. Acta Petrolei Sinica, 2015, 36(7): 791–836. DOI: https://doi.org/10.7623/syxb201507003. (in Chinese)

    Article  Google Scholar 

  54. ZHUO Qin-gong, ZHAO Meng-jun, LI Yong, WANG Yuan. Dynamic sealing evolution and hydrocarbon accumulation of evaporate cap rocks: An example from Kuqa foreland basin thrust belt [J]. Acta Petrolei Sinica, 2014, 35(5): 850–854. DOI: https://doi.org/10.7623/syxb201405004. (in Chinese)

    Google Scholar 

  55. SUN Ning-fu, GUO Feng-xia. The formation mechanism of gypsiferous salt and its catalytic effect on hydrocarbon generation in Kuqa depression [J]. Offshore Oil, 2015, 35(1): 59–61. DOI: https://doi.org/10.3969/j.issn.1008-2336.2015.01.058. (in Chinese)

    Google Scholar 

  56. MCNEIL B, SHAW H F, RANKIN A H. The timing of cementation in the rotliegend sandstones of the southern North Sea: A petrological and fluid inclusion study of cements [J]. Journal of Petroleum Geology, 1998, 21(3): 311–327. DOI: https://doi.org/10.1111/j.1747-5457.1998.tb00784.x.

    Article  Google Scholar 

  57. THOMSON J, CROUDACE I W, ROTHWELL R G. A geochemical application of the itrax scanner to a sediment core containing eastern mediterranean sapropel units [J]. Geological Society London Special Publications, 2006, 267(1): 65–77. DOI: https://doi.org/10.1144/GSL.SP.2006.267.01.05

    Article  Google Scholar 

  58. KERRY K, TALBOT M. Lacustrine carbonates as geochemical archives of environmental change and Biotic/Abiotic Interactions [M]//Large Lakes. Berlin Heidelberg Springer, 1990: 288–315. DOI 10.1007/978-3-642-84077-7_15.

    Google Scholar 

  59. BUDD D A, LAND L S. Geochemical imprint of meteoric diagenesis in holocene ooid sands, schooner cays, bahamas: Correlation of calcite cement geochemistry with extant groundwaters [J]. Journal of Sedimentary Research, 1990, 60(3): 361–378. DOI: https://doi.org/10.1306/212F919C-2B24-11D7-8648000102C1865D.

    Google Scholar 

  60. HAN Yuan-jia, HE Sheng, SONG Guo-qi, WANG Yong-shi, HAO Xue-feng, WANG Bing-jie, LUO Sheng-yuan. Origin of carbonate cements in the overpressured top seal and adjacent sandstones in Dongying depression [J]. Acta Petrolei Sinica, 2012, 33(3): 388–392. https://doi.org/lib.cqvip.com/QK/95667X/201203/41949152.html. (in Chinese)

    Google Scholar 

  61. IRWIN H, CURTIS C. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments [J]. Nature, 1977, 269(5625): 209–213. DOI: https://doi.org/10.1038/269209a0.

    Article  Google Scholar 

  62. LEI Huai-yan, CAO Chao, OU Wen-jia, GONG Chu-jun, SHI Chun-xiao. Carbon and oxygen isotope characteristics of foraminiferan from northern south china sea sediments and their significance to late quaternary hydrate decomposition [J]. Journal of Central South University, 2012, 19(6): 1728–1740. DOI: https://doi.org/10.1007/s11771-012-1200-5.

    Article  Google Scholar 

  63. LIU Si-bing, HUANG Si-jing, SHEN Zhong-min, LV Zheng-xiang, SONG Rong-cai. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the fourth member of the Xujiahe formation of the Xiaoquanfenggu area, Sichuan province, China [J]. Science China Earth Sciences, 2014, 57(5): 1077–1092. DOI: https://doi.org/10.1007/s11430-014-4815-2.

    Article  Google Scholar 

  64. FRIEDMAN I, O’NEIL J R. Compilation of stable isotope fractionation factors of geochemical interest [M]// M. Fleischer (Editor), Data of Geochemistry. U.S. Geol. Surv. Prof. Pap., 1977, 440-KK: 1–14. DOI: https://doi.org/10.1017/CBO9781107415324.004

  65. LONGSTAFFE F J, CALVO R, AYALON A, DONALDSON S. Stable isotope evidence for multiple fluid regimes during carbonate cementation of the upper tertiary hazeva formation, Dead Sea graben, southern Israel [J]. Journal of Geochemical Exploration, 2003, 80(2): 151–170. DOI: https://doi.org/10.1016/S0375-6742(03)00189-4.

    Article  Google Scholar 

  66. NORTHROP D A, CLAYTON R N. Oxygen-isotope fractionations in systems containing dolomite [J]. Journal of Geology, 1966, 74(2): 174–196. DOI: https://doi.org/10.1086/627153

    Article  Google Scholar 

  67. LAI Jin, WANG Gui-wen, CHAI Yu, XIN Yi, WU Qing-kuan, ZHANG Xiao-tao, SUN Yan-hui. Deep burial diagenesis and reservoir quality evolution of hightemperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa depression, Tarim basin of China [J]. AAPG Bulletin, 2017, 101(6): 829–862. DOI: https://doi.org/10.1306/08231614008.

    Article  Google Scholar 

  68. BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties. some principal aspects of diagenetic process in sedimentary basins [J]. Sedimentary Geology, 2014, 301(3): 1–14. DOI: https://doi.org/10.1016/j.sedgeo.2013.12.002.

    Google Scholar 

  69. ZHANG Rong-hu, WANG Jun-peng, MA Yu-jie, CHEN Ge, ZENG Qing-lu, ZHOU Chen-guang. The sedimentary microfacies, palaeo-geomorphology and their controls on gas accumulation of deep-buried cretaceous in Kuqa Depression, Tarim Basin, China [J]. Natural Gas Geoscience, 2015, 26(4): 667–678. DOI: https://doi.org/10.11764/j.issn.1672-1926.2015.04.0667. (in Chinese)

    Google Scholar 

  70. QIU Long-wei, HOU Li-xin, WANG Li-fang. A study on the zoning of hypergenesis of physical properties of clastic reservoir in cheng 110 block [J]. Petroleum Geology and Recovery Efficiency, 2005, 12(5): 16–20. DOI: https://doi.org/10.13673/j.cnki.cn37-1359/te.2005.05.005. (in Chinese)

    Google Scholar 

  71. IRWIN H. Early diagenetic carbonate precipitation and pore fluid migration in the kimmeridge clay of dorset, england [J]. Sedimentology, 1980, 27(5): 577–591. DOI: https://doi.org/10.1111/j.1365-3091.1980.tb01648.x.

    Article  Google Scholar 

  72. BUGGLE B, GLASER B, HAMBACH U, GERASIMENKO N, MARKOVI S. An evaluation of geochemical weathering indices in loess-paleosol studies [J]. Quaternary International, 2011, 240(1): 12–21. DOI: https://doi.org/10.1016/j.quaint.2010.07.019.

    Article  Google Scholar 

  73. YUAN Jing, YANG Xue-jun, YUAN Ling-rong, CHENG Rong-hong, ZHU Zhong-qian, LI Chun-tang, DONG Dao-tao. Cementation and its relationship with tectonic fractures of cretaceous Sandstones in DB Gas Field of Kuqa Sub-basin [J]. Acta Sedimentological Sinica, 2015, 33(4): 756–757. DOI: https://doi.org/10.14027/j.cnki.cjxb.2015.04.014. (in Chinese)

    Google Scholar 

  74. SURDAM R C, CROSSEY L J, HAGEN E S, HEASLER H P. Organic-inorganic interactions and sandstone diagenesis [J]. Aapg Bulletin, 1989, 73(1): 1–23. https://doi.org/www.researchgate.net/publication/237072808

    Google Scholar 

  75. MORAD S. Carbonate cementation in sandstones: Distribution patterns and geochemical evolution [M]. New Jersey: Wiley-Blackwell Press Ltd., 2009. DOI: https://doi.org/10.1002/9781444304893.ch1

    Google Scholar 

  76. TAYLOR K G, GAWTHORPE R L, CURTIS C D, MARSHALL J D, AWWILLER D N. Carbonate cementation in a sequence-stratigraphic framework: Upper cretaceous sandstones, book cliffs, Utah-Colorado [J]. Journal of Sedimentary Research, 2000, 70(2): 360–372. DOI: https://doi.org/10.1306/2DC40916-0E47-11D7-8643000102C1865D.

    Article  Google Scholar 

  77. WEI Wei, ZHU Xiao-min, TAN Ming-xuan, XUE Meng-ge, GUO Dian-bin, SU Hui, WANG Peng-yu. Diagenetic and porosity evolution of conglomerate sandstones in Bayingebi formation of the lower cretaceous, Chagan Sag, China-Mongolia frontier area [J]. Marine & Petroleum Geology, 2015, 66: 998–1012. DOI: https://doi.org/10.1016/j.marpetgeo.2015.08.011.

    Article  Google Scholar 

  78. BARCLAY S, WORDEN R H. Geochemical modelling of diagenetic reactions in a sub-arkosic sandstone [J]. Clay Minerals, 2000, 35(1): 57–68. DOI: https://doi.org/10.1180/000985500546729.

    Article  Google Scholar 

  79. ZHANG Liu-ping, BAI Guo-ping, LUO Xiao-rong, MA Xin-hua, CHEN Meng-jin, WU Ming-hui, YANG Wen-xiu. Diagenetic history of tight sandstones and gas entrapment in the yulin gas field in the central area of the ordos basin, china [J]. Marine & Petroleum Geology, 2009, 26(6): 974–989. DOI: https://doi.org/10.1016/j.marpetgeo.2008.05.003.

    Article  Google Scholar 

  80. CHEN Pei-yuan, TAN Xiu-cheng, LIU Hong, MA Teng, LUO Bing, JIANG Xing-fu, YU Yang, JIN Xiu-ju. Formation mechanism of reservoir oolitic dolomite in lower triassic feixianguan formation, northeastern Sichuan basin, southwest china [J]. Journal of Central South University, 2014, 21(8): 3263–3274. DOI: https://doi.org/10.1007/s11771-014-2299-3.

    Article  Google Scholar 

  81. YUAN Guang-hui, CAO Ying-chang, JIA Zhen-zhen, GLUYAS J, YANG Tian. Selective dissolution of feldspars in the presence of carbonates: The way to generate secondary pores in buried sandstones by organic CO2 [J]. Marine & Petroleum Geology, 2015, 60(5): 105–119. DOI: https://doi.org/10.1016/j.marpetgeo.2014.11.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ming Tang  (唐洪明).

Additional information

Foundation item: Projects(51674211, 51534006) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Tang, Hm., Wang, X. et al. Evolution of diagenetic fluid of ultra-deep Cretaceous Bashijiqike Formation in Kuqa depression. J. Cent. South Univ. 25, 2472–2495 (2018). https://doi.org/10.1007/s11771-018-3930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3930-5

Key words

关键词

Navigation