Skip to main content
Log in

Preparation and hygrothermal performance of composite phase change material wallboard with humidity control based on expanded perlite/diatomite/paraffin

基于膨胀珍珠岩/硅藻土/石蜡的复合相变蓄热调湿强板的制备及热湿性能研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Phase change material (PCM) can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings. In this study, a kind of composite phase change material particles (CPCMPs) were prepared by vacuum impregnation method with expanded perlite (EP) as supporting material and paraffin as phase change material. Thus, a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard (CPCHCW) was prepared by spraying the diatom mud on the surface of PCM plate. The composition, thermophysical properties and microstructure were characterized using X-ray diffraction instrument (XRD), differential scanning calorimeter (DSC) and scanning electron microscope (SEM). Additionally, the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test. The results can be summarized as follows: (1) CPCMPs have suitable phase change parameters with melting/freezing point of 18.23 °C/29.42 °C and higher latent heat of 54.66 J/g/55.63 J/g; (2) the diatom mud can control the humidity of confined space with a certain volume; (3) the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity. The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.

摘要

随着人们对室内热舒适度要求的不断提高, 近年来建筑能耗逐渐上升。 因此, 被动节能材料受到广泛关注。 相变材料和调湿材料是可用于建筑物的两种重要的被动节能材料。 相变材料通过在相变过程中吸收或释放热量来调节室内温度, 调湿材料可以依据自身特性自动调节室内的相对湿度。 值得注意的是, 现有的研究大多数都是单独分析相变材料或调湿材料, 结合两者性能的研究却很少, 限制了它们在建筑中的应用。 为了研究相变材料和调湿材料的复合性能, 本文以石蜡为相变材料, 膨胀珍珠岩为载体材料, 通过真空吸附法制备复合相变颗粒。 将复合相变颗粒在自制的模具里压制成相变板材, 最后在相变板材上喷涂调湿材料硅藻泥, 制得具有调湿性能的复合相变墙板。 利用 XRD、 物理吸附分析仪、 SEM、 DSC 对物质组成、 孔径、 微观结构、 热物理性能进行了表征, 复合相变颗粒对调湿材料的平衡含湿量和循环吸放湿性能进行了测试, 同时, 对具有调湿性能的复合相变墙板进行性能测试。 结果表明: (1) 复合相变墙板具有适宜的相变参数, 熔点/凝固点分别为 18.23 °C/29.42 °C, 高潜热值分别为 54.66 J/g 和 55.63 J/g。 (2) 经过循环吸放湿测试后, 硅藻泥的吸湿量总是高于放湿量, 且吸湿量和放湿量有微弱的衰减, 但硅藻泥的调湿性能相对稳定。 (3) 硅藻泥在不同温度下 (T=10 °C, 25 °C, 40 °C; RH=85%) 的调湿性能随着温度的升高而降低, 在不同湿度下 (RH=75%, 85%, 90%; T=25 °C) 随着湿度的增加而增强。 (4) 相变材料和硅藻泥耦合, 两者相互作用对各自的效果有正向加强作用, 可以有效调节室内温湿度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ISAAC M, van VUUREN D P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change [J]. Energy Policy, 2009, 37(2): 507–521.

    Article  Google Scholar 

  2. ZHANG Yan, HE Chen-qi, TANG Bao-jun, WEI Yi-ming. China’s energy consumption in the building sector: A life cycle approach [J]. Energy and Buildings, 2015, 94: 240–251.

    Article  Google Scholar 

  3. ZHANG Tao, LIU Xiao-hua, JIANG Yi. Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review [J]. Renewable and Sustainable Energy Reviews, 2014, 29: 793–803.

    Article  Google Scholar 

  4. PÉREZ-LOMBARD L, ORTIZ J, POUT C. A review on buildings energy consumption information [J]. Energy and Buildings, 2008, 40(3): 394–398.

    Article  Google Scholar 

  5. ZHOU Dan, ZHAO Chang-ying, TIAN Yuan. Review on thermal energy storage with phase change materials (PCMs) in building applications [J]. Applied Energy, 2012, 92: 593–605.

    Article  Google Scholar 

  6. BAETENS R, JELLE B P, GUSTAVSEN A. Phase change materials for building applications: A state-of-the-art review [J]. Energy and Buildings, 2010, 42(9): 1361–1368.

    Article  Google Scholar 

  7. KUZNIK F, DAVID D, JOHANNES K, ROU X J. A review on phase change materials integrated in building walls [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 379–391.

    Article  Google Scholar 

  8. SHARMA A, TYAGI V V, CHEN C R, BUDDHI D. Review on thermal energy storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318–345.

    Article  Google Scholar 

  9. RATHOD M K, BANERJEE J. Thermal stability of phase change materials used in latent heat energy storage systems: A review [J]. Renewable and Sustainable Energy Reviews, 2013, 18: 246–258.

    Article  Google Scholar 

  10. HU Zhi-bo, YAN Yang, ZHENG Shui-lin, SUN Qin, YIN Sheng-nan. Preparation and characterization of humidity control material based on diatomite/ground calcium carbonate composite [J]. Journal of Inorganic Materials, 2016, 1: 14.

    Google Scholar 

  11. MADDISON M, MAURING T, KIRSIMÄE K, MANDER Ü. The humidity buffer capacity of clay–sand plaster filled with phytomass from treatment wetlands [J]. Building and Environment, 2009, 44(9): 1864–1868.

    Article  Google Scholar 

  12. LIU Fan-han, XU Jian-xin, WANG Hui-tao, WANG Hua. Numerical method and model for calculating thermal storage time for an annular tube with phase change material [J]. Journal of Central South University, 2017, 24(1): 217–226.

    Article  Google Scholar 

  13. RAO Zhong-hao, WANG Shuang-feng, ZHANG Zheng-guo. Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3136–3145.

    Article  Google Scholar 

  14. FELDMAN D, BANU D, HAWES D, GHANBARI E. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard [J]. Solar Energy Materials, 1991, 22(2, 3): 231–242.

    Article  Google Scholar 

  15. VU D H, WANG K S, BAC B H. Humidity control porous ceramics prepared from waste and porous materials [J]. Materials Letters, 2011, 65(6): 940–943.

    Article  Google Scholar 

  16. AGYENIM F, HEWITT N. The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation [J]. Energy and Buildings, 2010, 42(9): 1552–1560.

    Article  Google Scholar 

  17. ARUNDEL A V, STERLING E M, BIGGIN J H, STERLING T D. Indirect health effects of relative humidity in indoor environments [J]. Environmental Health Perspectives, 1986, 65: 351.

    Google Scholar 

  18. AL-SAADI S N, ZHAI Z J. Modeling phase change materials embedded in building enclosure: A review [J]. Renewable and Sustainable Energy Reviews, 2013, 21: 659–673.

    Article  Google Scholar 

  19. CABEZA L F, CASTELLON C, NOGUES M, MEDRANO M, LEPPERS R, ZUBILLAGA O. Use of microencapsulated PCM in concrete walls for energy savings [J]. Energy and Buildings, 2007, 39(2): 113–119.

    Article  Google Scholar 

  20. SHILEI L V, ZHU Neng, FENG Guo-hui. Impact of phase change wall room on indoor thermal environment in winter [J]. Energy and Buildings, 2006, 38(1): 18–24.

    Article  Google Scholar 

  21. SOLÉ A, MIRÓ L, BARRENECHE C, MARTORELL I, CABEZA L F. Review of the T-history method to determine thermophysical properties of phase change materials (PCM) [J]. Renewable and Sustainable Energy Reviews, 2013, 26: 425–436.

    Article  Google Scholar 

  22. SUN J Z, WU Z Z. Study on evaluation method of exudation of phase transition working substance for building materials [J]. New Build Mater, 2004, 7: 43–46.

    Google Scholar 

  23. KEDL R J, STOVALL T K. Activities in support of the wax-impregnated wallboard concept [R]. Oak Ridge National Lab, TN (USA), 1989.

    Google Scholar 

  24. SHAPIRO A B. Solar thermal energy storage using a paraffin wax phase change material [J]. Energy Production and Conversion, 1980, 2(6): 65–72.

    Google Scholar 

  25. LI Hui-qiang, CHEN Hui-su, LI Xiang-yu, SANJAYAN J. Development of thermal energy storage composites and prevention of PCM leakage [J]. Applied Energy, 2014, 135: 225–233.

    Article  Google Scholar 

  26. ZHANG Dong, ZHOU Jian-ming, WU Ke-yu, LI Zong-jin. Granular phase changing composites for thermal energy storage [J]. Solar Energy, 2005, 78(3): 471–480.

    Article  Google Scholar 

  27. KARAIPEKLI A, SARI A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage [J]. Solar Energy, 2009, 83(3): 323–332.

    Article  Google Scholar 

  28. WEN Zhi-hong, CHEN Bin. Performance analysis and application of adiabatic insulation product made from expanded perlite [J]. Journal of Zhengzhou Institute Technology, 2005, 4: 12. (in Chinese)

    Google Scholar 

  29. SARI A, KARAIPEKLI A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material [J]. Applied Thermal Engineering, 2007, 27(8): 1271–1277.

    Article  Google Scholar 

  30. EVOLA G, MARLETTA L, SICURELLA F. A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings [J]. Building and Environment, 2013, 59: 517–527.

    Article  Google Scholar 

  31. FANG L, CLAUSEN G, FANGER P O. Temperature and humidity: Important factors for perception of air quality and for ventilation requirements/Discussion [J]. ASHRAE Transactions, 2000, 106: 503.

    Google Scholar 

  32. OHASHI F, MAEDA M, INUKAI K, SUZUKI M, TOMURA S. Study on intelligent humidity control materials: Water vapor adsorption properties of mesostructured silica derived from amorphous fumed silica [J]. Journal of Materials Science, 1999, 34(6): 1341–1346.

    Article  Google Scholar 

  33. JIA Yu-xin, HAN Wei, XIONG Guo-xing, YANG Wei-shen. Diatomite as high performance and environmental friendly catalysts for phenol hydroxylation with H2O2 [J]. Science and Technology of Advanced Materials, 2007, 8(1): 106–109.

    Article  Google Scholar 

  34. VU D H, WANG K S, BAC B H, NAM B X. Humidity control materials prepared from diatomite and volcanic ash [J]. Construction and Building Materials, 2013, 38: 1066–1072.

    Article  Google Scholar 

  35. HUMPHREYS M A, NICOL J F, RAJA I A. Field studies of indoor thermal comfort and the progress of the adaptive approach [J]. Advances in Building Energy Research, 2007, 1(1): 55–88.

    Article  Google Scholar 

  36. KONG Xiang-fei, ZHONG Yu-liang, RONG Xian, MIN Chun-hua, QI Cheng-ying. Building energy storage panel based on paraffin/expanded perlite: Preparation and thermal performance study [J]. Materials, 2016, 9(2): 70.

    Article  Google Scholar 

  37. KONG Xiang-fei, YAO Cheng-qiang, JIE Peng-fei, LIU Yun, QI Cheng-ying, RONG Xian. Development and thermal performance of an expanded perlite-based phase change material wallboard for passive cooling in building [J]. Energy and Buildings, 2017, 152: 547–557.

    Article  Google Scholar 

  38. THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, PODRIGUEZ F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9, 10): 1051–1069.

    Google Scholar 

  39. WANG Wen-wen, ZHOU Jia-bin, ACHARI G, YU Jia-guo, CAI Wei-quan. Cr (VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 33–40.

    Article  Google Scholar 

  40. ZHOU Jia-bin, TANG Chuan, CHENG Bei, YU Jia-guo, JARONIEC M. Rattle-type carbon–alumina core–shell spheres: Synthesis and application for adsorption of organic dyes [J]. ACS applied Materials & Interfaces, 2012, 4(4): 2174–2179.

    Article  Google Scholar 

  41. GREGG S J, SING K S W, SALZBERG H W. Adsorption surface area and porosity [J]. Journal of the Electrochemical Society, 1967, 114(11): 279C.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-fei Kong  (孔祥飞).

Additional information

Foundation item: Project(51408184) supported by the National Natural Science Foundation of China; Project(E2017202136) supported by the Natural Science Foundation of Hebei Province, China; Project(BSBE2017-05) supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology, China; Project(QG2018-3) supported by Hebei Provincial Department of Transportation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, Y., Kong, Xf. et al. Preparation and hygrothermal performance of composite phase change material wallboard with humidity control based on expanded perlite/diatomite/paraffin. J. Cent. South Univ. 25, 2387–2398 (2018). https://doi.org/10.1007/s11771-018-3923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3923-4

Key words

关键词

Navigation