Abstract
We reported the fabrication of highly porous graphene/TiO2 composite nanofibers in the form of a nonwoven mat by electrospinning followed by calcination in air at 450 °C. The graphene can uniformly disperse in highly porous TiO2 nanofibers. The highly porous graphene/TiO2 composite nanofibers exhibited excellent catalytic activities. The new method for producing graphene/TiO2 composite nanofibers is versatile and can be extended to fabricate various types of metal oxide and graphene nanocomposites.
摘要
本文报道了一种利用静电纺丝制备高度多孔的石墨烯/TiO2 复合材料纳米纤维的方法。 该方法通过静电纺丝将石墨烯与有机钛源复合, 经 450 °C 焙烧后得到分布均匀、 具有高度多孔的石墨烯/TiO2 复合材料纳米纤维。 该复合材料表现出优异的光催化性能。 制备石墨烯/TiO2 复合材料纳米纤维的新方法用途广泛, 可用于制备各种金属氧化物和石墨烯纳米复合材料。
This is a preview of subscription content, access via your institution.
References
CUI Yi, WEI Qing-qiao, PARK H, LIEBER C. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001, 293: 1289–1292.
LU Bing-an, WANG Ya-jiang, LIU Yan-xia, DUAN Hui-gao, ZHOU Jin-yuan, ZHANG Zhen-xing, WANG You-qing, LI Xiao-dong, WANG Wei, LAN Wei, XIE Er-qing. Superhighthroughput needleless electrospinning using a rotary cone as spinneret [J]. Small, 2010, 6: 1612–1616.
LU Bing-an, ZHANG Zhen-xing, BAO Zhong, LI Xiaodong, LIU Yan-xia, ZHU Chen-quan, DUAN Hui-gao, XIE Yi-zhu, WANG You-qing, XIE Er-qing. Carbon nanonodules fewer than ten graphenes thick grown on aligned amorphous carbon nanofibers [J]. Carbon, 2011, 49: 1939–1945.
ZHU Jian, ZHANG Guan-hua, YU Xin-zhi, LI Qiu-hong, LU Bing-an. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries [J]. Nano Energy, 2014, 3: 80–87.
DUAN Hui-gao, XIE Er-qing, HAN Li, XU Zhi. Turning PMMA nanofibers into graphene nanoribbons by in situ electron beam irradiation [J]. Advanced Materials, 2008, 20: 3284–3288.
ZHU Jian, XU Zhi, LU Bing-an. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications [J]. Nano Energy, 2014, 7: 114–123.
WANG Long-lu, LI Yue, LIU Yu-tang. Reduced graphene oxide@ TiO2 nanorod@ reduced graphene oxide hybrid nanostructures for photoelectrochemical hydrogen production [J]. Micro & Nano Letters, 2017, 12(7): 494–496.
GIRIT C, MEYER J, ERNI R, ROSSELL M, KISIELOWSKI C, YANG Li, PARK C, CROMMIE M, COHEN M, LOUIE S, ZETTL A. Graphene at the edge: Stability and dynamics [J]. Science, 2009, 323: 1705–1708.
LU Bing-an, LI Ting, ZHAO Hai-tao, LI Xiao-dong, GAO Cai-tian, ZHANG Sheng-xiang, XIE Er-qing. Graphenebased composite materials beneficial to wound healing [J]. Nanoscale, 2012, 4: 2978–2982.
HU Wen-bing, PENG Cheng, LUO Wei-jie, LU Min, LI Xiao-ming, LI Di, HUANG Qing, FAN Chun-hai. Graphenebased antibacterial paper [J]. ACS Nano, 2010, 4: 4317–4323.
STANDLEY B, BAO Wen-zhong, ZHANG Hang, BRUCH J, LAU Chun-ning, BOCKRATH M. Graphene-based atomicscale switches [J]. Nano Letter, 2008, 8: 3345–3349.
STANKOVICH S, DIKIN D, DOMMETT G, KOHLHAAS K, ZIMNEY E, STACH E, PINER R, NGUYEN S, RUOFF R. Graphene-based composite materials [J]. Nature, 2006, 442: 282–286.
STOLLER M, PARK S, ZHU Y, AN J, RUOFF R. Graphene-based ultracapacitors [J]. Nano Letter, 2008, 8(10): 3498–3502.
ALLEN M, TUNG V, KANER R. Honeycomb carbon: A review of graphene [J]. Chemical Reviews, 2009, 110: 132–145.
ZHANG Yin, NAYAK T, HONG H, CAI Wei-bo. Graphene: A versatile nanoplatform for biomedical applications [J]. Nanoscale, 2012, 4: 3833–3842.
LI Xiao-dong, ZHANG Yong-zhe, ZHANG Zhen-xing, ZHOU Jing-yuan, SONG Jie, LU Bing-an, XIE Er-qing, LAN Wei. Electrospraying tuned photoanode structures for dye-sensitized solar cells with enhanced energy conversion efficiency [J]. Journal of Power Sources, 2011, 196: 1639–1644.
WANG Bo, CHEN Zhi-ming, ZHANG Jia-nan, CAO Jing-jing, WANG Shu-xia, TIAN Qiu-ge, GAO Ming, XU Qun. Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol-gel reaction: Effect of graphene oxide on PVA nanofibers and growth of TiO2 [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 318–325.
PANT H, ADHIKARI S, PANT B, JOSHI M, KIM H, PARK C, KIM C. Immobilization of TiO2 nanofibers on reduced graphene sheets: Novel strategy in electrospinning [J]. Journal of Colloid and Interface Science, 2015, 457: 174–179.
KIM C, KIM B, YANG K. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis [J]. Carbon, 2012, 50: 2472–2481.
ZHAO Yin, LI Chun-zhong, LIU Xiu-hong, GU Feng. Highly enhanced degradation of dye with well-dispersed TiO2 nanoparticles under visible irradiation [J]. Journal of Alloys and Compounds, 2007, 440: 281–286.
ZHENG S, WANG T, HAO W, SHEN R. Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation [J]. Vacuum, 2002, 65: 155–159.
ZHANG Hao, LV Xiao-jun, LI Yue-ming, WANG Ying, LI Jing-hong. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2009, 4: 380–386.
CHEN Jun-song, WANG Zhi-yu, DONG Xiao-chen, CHEN Peng, LOU Xiong-wen. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities [J]. Nanoscale, 2011, 3: 2158–2161.
DING Shu-jiang, CHEN Jun-song, LUAN De-yan, BOEY F, MADHAVI S, LOU Xiong-wen. Graphene-supported anatase TiO2 nanosheets for fast lithium storage [J]. Chemical Communications, 2008, 8: 5780–5782.
FENG Xin-jian, SHANKAR K, VARGHESE O, PAULOSE M, LATEMPA T, GROMES C. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications [J]. Nano Letter, 2008, 8: 3781–3786.
ZHU Kai, NEALE N, MIEDANER A, FRANK A. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano Letter, 2007, 7: 69–74.
LI Dan, WANG Yu-liang, XIA You-nan. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films [J]. Advanced Materials, 2004, 16: 361–366.
LI Dan, XIA You-nan. Electrospinning of nanofibers: reinventing the wheel? [J]. Advanced Materials, 2004, 16: 1151–1170.
LU Xiao-feng, WANG Ce, WEI Yen. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications [J]. Small, 2009, 5: 2349–2370.
RAMAKRISHNA S, FUJIHARA K, TEO W, YONG T, MA Zu-wei, RAMASESHAN R. Electrospun nanofibers: Solving global issues [J]. Materials Today, 2006, 9: 40–50.
ZHU Pei-ning, NAIR A, PENG Sheng-jie, YAN Sheng-yuan, RAMAKRISHNA S. Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning [J]. ACS Applied Materials & Interfaces, 2012, 4: 581–585.
ZHU Jian, LEI Dan-ni, ZHANG Guan-hua, LU Bing-an, WANG Tai-hong. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries [J]. Nanoscale, 2013, 5: 5499–5505.
ZHU Jian, ZHANG Guan-hua, YU Xin-zhi, LI Qiu-hong, LU Bing-an, XU Zhi. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithiumion batteries [J]. Nano Energy, 2014, 3: 80–87.
LU Bing-an, ZHU Cheng-quan, ZHANG Zhen-xing, LAN Wei, XIE Er-qing. Preparation of highly porous TiO2 nanotubes and their catalytic applications [J]. Journal of Materials Chemistry, 2012, 22: 1375–1379.
LINSEBIGLER A, LU Guang-quan, YATES Y. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95: 735–758.
INAGAKI M, KOJIN F, TRYBA B, TOYODA M. Carbon-coated anatase: The role of the carbon layer for photocatalytic performance [J]. Carbon, 2005, 43: 1652–1659.
NAIR R, BLAKE P, GRIGORENKO A, NOVOSELOV K, BOOTH T, STAUBER T, PERES N, GEIM A. Fine structure constant defines visual transparency of graphene [J]. Science, 2008, 320: 1308–1309.
ABERGEL D, FALO V. Optical and magneto-optical far-infrared properties of bilayer graphene [J]. Physical Review B, 2007, 75: 155430.
TANG D, ZHANG G. Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance [J]. Applied Surface Science, 2017, 391: 415–422.
TANG D, ZHANG G. Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity [J]. Ultrasonics Sonochemistry, 2017, 37: 208–215.
WAN Z, ZHANG G, WU X, YIN S. Novel visible-lightdriven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction [J]. Applied Catalysis B: Environmental, 2017, 207: 17–26.
Author information
Authors and Affiliations
Corresponding author
Additional information
Foundation item: Project(41271332) supported by the National Natural Science Foundation of China
Rights and permissions
About this article
Cite this article
He, Y., Liu, Yg. Direct fabrication of highly porous graphene/TiO2 composite nanofibers by electrospinning for photocatalytic application. J. Cent. South Univ. 25, 2182–2189 (2018). https://doi.org/10.1007/s11771-018-3906-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11771-018-3906-5
Key words
- porous structure
- graphene
- titanium dioxide
- photocatalytic application
关键词
- 多孔结构
- 石墨烯
- 二氧化钛
- 光催化应用