Skip to main content
Log in

Biodegradation of ethylthionocarbamates by a mixed culture of iron-reducing bacteria enriched from tailings dam sediments

尾矿库底泥沉积物中异化铁还原混合菌群降解乙硫氨酯

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Ethylthionocarbamates (ETC), which is the most widely used as collectors in the flotation of sulfide, is known to cause serious pollution to soil and groundwater. The potential biodegradation of ETC was evaluated by applying a mixed culture of iron-reducing bacteria (IRB) enriched from tailings dam sediments. The results showed that ETC can be degraded by IRB coupled to Fe(III) reduction, both of which can be increased in the presence of anthraquinone-2,6-disulfonate (AQDS). Moreover, Fe(III)-EDTA was found to be a more favorable terminal electron acceptor compared to α-Fe2O3, e.g., within 30 d, 72% of ETC was degraded when α-Fe2O3+AQDS was applied, while it is 82.67% when Fe(III)-EDTA+AQDS is added. The dynamic models indicated that the kETC degradation was decreased in the order of Fe(III)-EDTA+AQDS>α-Fe2O3+AQDS>Fe(III)-EDTA>α-Fe2O3, with the corresponding maximum biodegradation rates being 2.6, 2.45, 2.4 and 2.0 mg/(L.d), respectively, and positive parallel correlations could be observed between kFe(III) and kETC. These findings demonstrate that IRB has a good application prospect in flotation wastewater.

摘要

乙硫氨酯是一种广泛使用的硫化矿捕收剂, 其大量使用给土壤和水体造成了严重的污染。本文 研究了尾矿库底泥沉积物中的异化铁还原混合菌群对乙硫氨酯的降解能力。结果表明: 异化铁还原混 合菌群可以有效地降解乙硫氨酯, 并耦联着铁的还原, 蒽醌-2,6-二磺酸钠的加入可以有效提高乙硫氨 酯的降解速率和铁的还原速率。相对赤铁矿而言, EDTA 络合铁是更好的电子受体, 例如, 在异化铁 还原混合菌群降解乙硫氨酯的过程中, 加入赤铁矿和蒽醌-2,6-二磺酸钠时, 30 d 的乙硫氨酯的去除率 为72%, 而加入EDTA 络合铁和蒽醌-2,6-二磺酸钠时, 30 d 的去除率为82.67%。在加入EDTA 络合 铁和蒽醌-2,6-二磺酸钠、赤铁矿和蒽醌-2,6-二磺酸钠、EDTA 络合铁和赤铁矿条件下, 乙硫氨酯的最 大生物降解速率分别为2.6, 2.45, 2.4 和2.0 mg/(L.d), 铁的还原速率和乙硫氨酯的降解速率常数呈现 很好的正相关性。研究表明异化铁还原菌在浮选废水处理方面具有良好的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN Shao, DU Dong, WU Yi, XING Rui. Degradation of ethylthionocarbamate by activated sludge coupled with interior microelectrolysis [J]. Desalination and Water Treatment, 2016, 57(45): 21437–21443. DOI: 10.1080/19443994.2015.1119743.

    Article  Google Scholar 

  2. CHEN Shao, DU Dong. Degradation of n-butyl xanthate using fly ash as heterogeneous Fentonlike catalyst [J]. Journal of Central South University, 2014, 21(4): 1448–1452. DOI: 10.1007/s11771-014-2084-3.

    Article  Google Scholar 

  3. CUI Kui, HE Yue, JIN Sheng. Enhanced UV-visible response of bismuth subcarbonate nanowires for degradation of xanthate and photocatalytic reaction mechanism [J]. Chemosphere, 2016, 149: 245–253. DOI: 10.1016/j.chemosphere.2016.01.111.

    Article  Google Scholar 

  4. CHEN Xing, HU Yue, PENG Hong, CAO Xue. Degradation of ethyl xanthate in flotation residues by hydrogen peroxide [J]. Journal of Central South University, 2015, 22(2): 495–501. DOI: 10.1007/s11771-015-2548-0.

    Article  Google Scholar 

  5. ESTHER J, SUKLA L B, PRADHAN N, PANDA S. Fe (III) reduction strategies of dissimilatory iron reducing bacteria [J]. Korean Journal of Chemical Engineering, 2015, 32(1): 1–14. DOI: 10.1007/s11814-014-0286-x.

    Article  Google Scholar 

  6. PENG Lai, LIU Yi, GAO Shu, DAI Xiao, NI Bing-Jie. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling [J]. Chemosphere, 2015, 139: 334–339. DOI: 10.1016/j.chemosphere.2015.06.090.

    Article  Google Scholar 

  7. LOVLEY D R, ANDERSON R T. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface [J]. Hydrogeology Journal, 2000, 8(1): 77–88. https://doi.org/works.bepress.com/derek_lovley/231.

    Article  Google Scholar 

  8. BOND D R, HOLMES D E, TENDER L M, LOVLEY D R. Electrode-reducing microorganisms that harvest energy from marine sediments [J]. Science, 2002, 295: 483–485. DOI: 10.1126/science.1066771.

    Article  Google Scholar 

  9. WILKINS M J, LIVENS F R, VAUGHAN D J, LLOYD J R. The impact of Fe(III)-reducing bacteria on uranium mobility [J]. Biogeochemistry, 2006, 78(2): 125–150. DOI: 10.1007/s10533-005-3655-z.

    Article  Google Scholar 

  10. LI Zhi, SUZUKI D, ZHANG Chun, YANG Su, NAN Jun, YOSHIDA N, WANG Ai, KATAYAMA A. Anaerobic 4-chlorophenol mineralization in an enriched culture under iron-reducing conditions [J]. Journal of Bioscience and Bioengineering, 2014, 118(5): 529–532. DOI: 10.1016/j.jbiosc.2014.04.007.

    Article  Google Scholar 

  11. HE Jiang, QU Dong. Dissimilatory Fe(III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids [J]. Journal of Environmental Sciences, 2008, 20(9): 1103–1108.

    Article  Google Scholar 

  12. JIN Xin, WANG Fang, GU Cheng, YANG Xing, KENGARA F O, BIAN Yong, SONG Yang, JIANG Xin. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions [J]. Chemosphere, 2015, 138: 18–24. DOI: 10.1016/j. chemosphere.2015.05.020.

    Article  Google Scholar 

  13. DOU Jun, LIU Xiang, DING Ai. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions [J]. Journal of Hazardous Materials, 2009, 165(1–3): 325–331. DOI: 10.1016/j.jhazmat. 2008.10.002.

    Article  Google Scholar 

  14. FENG Chun, YUE Xian, LI Fang, WEI Chao. Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria [J]. Biosensors and Bioelectronics, 2013, 39: 51–56. DOI: 10.1016/j.bios.2012.06.037.

    Article  Google Scholar 

  15. LIU Tong, LI Xiao, LI Fang, ZHANG Wei, CHEN Man, ZHOU Shun. Reduction of iron oxides by Klebsiella pneumoniae L17: Kinetics and surface properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379(1–3): 143–150. DOI: 10.1016/j.colsurfa. 2010. 11.061.

    Article  Google Scholar 

  16. XU Yan, HE Yan, FENG Xiao, LIANG Lu, XU Jian, BROOKES P C, WU Jian. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z [J]. Science of the Total Environment, 2014, 473–474: 215–223. DOI: 10. 1016/j.scitotenv.2013.12.022.

    Article  Google Scholar 

  17. LI Fang, LI Xiao, ZHOU Shun, ZHUANG Li, CAO Fang, HUANG De, XU Wei, LIU Tong, FENG Chun. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide [J]. Environmental Pollution, 2010, 158: 1733–1740. DOI:10.1016 /j.envpol.2009.11.020.

    Article  Google Scholar 

  18. ZHU Zhen, TAO Liang, LI Fang. 2-nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolvedorganic matter [J]. Journal of Hazardous Material, 2014, 279(3): 436–443. DOI: 10.1016/j.jhazmat. 2014.07.030.

    Article  Google Scholar 

  19. CAO Fang, LIU Tong, WU Chun, LI Fang, LI Xiao, YU Huan, TONG Hui, CHEN Man. Enhanced biotransformation of DDTs by an iron-and humic-reducing bacteria aeromonashydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonicdisodium salt (AQDS) [J]. Journal of Agricultural and Food Chemistry, 2012, 60(45): 11238–11244. DOI: 10.1021/jf303610w.

    Article  Google Scholar 

  20. LUAN Fu, BURGOS W D, XIE Li, ZHOU Qi. Bioreduction of nitrobenzene, naturalorganic matter, and hematite by Shewanella putrefaciens CN32 [J]. Environmental Science & Technology, 2010, 44(1): 184–190. DOI: 10.1021/es901585z@proofing.

    Article  Google Scholar 

  21. NEUMANN A, OLSON T L, SCHERER M M. Spectroscopic evidence for Fe(II)-Fe(III)electron transfer at clay mineral edge and basal sites [J]. Environmental Science & Technology, 2013, 47(13): 6969–6977. DOI: 10.1021/es304744v.

    Article  Google Scholar 

  22. SHEN Wei, CHEN Hong, PAN Shan. Anaerobic biodegradation of 1,4-dioxane by sludge enriched with iron-reducing microorganisms [J]. Bioresource Technology, 2008, 99(7): 2483–2487. DOI: 10.1016/j.biortech.2007. 04.054.

    Article  Google Scholar 

  23. LOVLEY D R, WOODWARD J C. Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction [J]. Chemical Geology, 1996, 132(1–4): 19–24. DOI: https://doi.org/10.1016/S0009-2541(96)00037-X.

    Article  Google Scholar 

  24. LI Xiao, LIU Liang, LIU Tong, YUAN Tian, ZHANG Wei, LI Fang, ZHOU Shun, LI Yong. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17 [J]. Chemosphere, 2013, 92(2): 218–224. DOI: 10.1016/j.chemosphere. 2013. 01.098.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-hua Chen  (陈绍华).

Additional information

Foundation item: Project(51708561) supported by the National Natural Science Foundation of China; Projects(CZP17097, CZW15037) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sh., Sun, Y. & Xiong, L. Biodegradation of ethylthionocarbamates by a mixed culture of iron-reducing bacteria enriched from tailings dam sediments. J. Cent. South Univ. 25, 1612–1618 (2018). https://doi.org/10.1007/s11771-018-3853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3853-1

Key words

关键词

Navigation