Skip to main content
Log in

Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code

基于颗粒流流-固耦合改进算法的岩石渗透性演化数值模拟研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.

摘要

岩石渗透性的意义重大,构造应力和人类工程活动会对渗透性产生巨大影响。岩石内部孔压与 流速分布情况的全面监测对阐明渗透性的演化机制至关重要,其在试验中难以实施,但在数值模拟中 可容易实现。因此,本文采用一种离散元方法—颗粒流程序(Particle Flow Code,简称PFC)开展岩 石材料渗透性行为的模拟研究。针对PFC 中原流-固耦合算法的不足,对其进行改进,使改进后的算 法更能体现流体在岩石裂隙中的流动优势。分别采用原算法与改进算法对三轴压缩过程中的渗透性演 化进行数值模拟,对比结果表明改进算法能更好地反映试验现象。本文利用改进流-固耦合算法,进 一步分析了渗流过程中的孔压和流速分布的演化情况。结果表明,孔压和流速都优先通过裂隙传递而 非岩石基质。根据运移流体的能力将裂隙划分为三类: I)贯穿进口端和出口端的裂隙;II)仅与进 口端连接的裂隙;III)仅与出口端连接的裂隙。I)类裂隙始终是最主要的流速和孔压的传递通道。II ) 类裂隙中孔压首先增大并逐渐趋于稳定,而流速首先增大,当流体运移到裂隙终端后流速减小甚至降 低为零。在III)类裂隙中,无明显的流体运移或孔压集中。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HOEK E, BROWN E T. Empirical strength criterion for rock masses [J]. Journal of the Geotechnical Engineering Division, 1980, 106(9): 1013–1035. DOI: https://doi.org/10.1016/0148-9062(81)90766-X.

    Google Scholar 

  2. TOWNEND J, ZOBACK M D. How faulting keeps the crust strong [J]. Geology, 2000, 28(5): 399–402. DOI: https://doi.org/10.1130/0091-7613(2000)28<399:hfktcs>2.0.co;2.

    Article  Google Scholar 

  3. KNIPE R J. Faulting processes and fault seal [J]. Structural & Tectonic Modelling & Its Application to Petroleum Geology, 1992: 325–342. DOI: https://doi.org/10.1016/B978-0-444-88607-1.50027-9.

    Chapter  Google Scholar 

  4. SHIPTON Z K, EVANS J P, ROBESON K R, FORSTER C B, SNELGROVE S H. Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults [J]. AAPG Bulletin, 2002, 86(5): 863–883. DOI: https://doi.org/10.1306/61EEDBC0-173E-11D7-8645000102C1865D.

    Google Scholar 

  5. BRACE W F. Permeability of crystalline and argillaceous rocks [J]. International Journal of Rock Mechanics and Mining Sciences &amp; Geomechanics Abstracts, 1980, 17(5): 241–251. DOI: https://doi.org/10.1016/0148-9062(80)90807-4.

    Article  Google Scholar 

  6. ANTONELLINI M A, AYDIN A. Effect of faulting on fluid flow in porous sandstones: Petrophysical properties [J]. AAPG Bulletin, 1994, 78(3): 355–377. DOI: https://doi.org/10.1306/8D2B1B60-171E-11D7-8645000102C1865D.

    Google Scholar 

  7. BARTON C A, ZOBACK M D, MOOS D. Fluid flow along potentially active faults in crystalline rock [J]. Geology, 1995, 23(8): 683. DOI: https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.co;2.

    Article  Google Scholar 

  8. HEAP M J, KENNEDY B M. Exploring the scale-dependent permeability of fractured andesite [J]. Earth & Planetary Science Letters, 2016, 447: 139–150. DOI: https://doi.org/10.1016/j.epsl.2016.05.004.

    Article  Google Scholar 

  9. RAWLING G C, GOODWIN L B, WILSON J L. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types [J]. Geology, 2001, 29(1): 43–46. DOI: https://doi.org/10.1130/0091-7613(2001)029<0043:IAPSAH>2.0.co;2.

    Article  Google Scholar 

  10. SAUL CAINE J, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure [J]. Geology, 1996, 24(11): 1025–1028. DOI: https://doi.org/10.1130/0091-10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.co;2.

    Article  Google Scholar 

  11. JIA C J, XU W Y, WANG H L, WANG R B, JUN Y U, YAN L. Stress dependent permeability and porosity of low-permeability rock [J]. Journal of Central South University, 2017, 24(10): 2396–2405. DOI: https://doi.org/10.1007/s11771-017-3651-1.

    Article  Google Scholar 

  12. BRACE W F. A note on permeability changes in geologicmaterial due to stress [J]. Pure and Applied Geophysics, 1978, 116(4): 627–633. DOI: https://doi.org/10.1007/BF00876529.

    Article  Google Scholar 

  13. MORROW C A, LOCKNER D A. Permeability and porosity of the Illinois UPH 3 drillhole granite and a comparison with other deep drillhole rocks [J]. Journal of Geophysical Research Atmospheres, 1997, 102(B2): 3067–3075. DOI: https://doi.org/10.1029/96JB03178.

    Article  Google Scholar 

  14. ZHU W, WONG T F. The transition from brittle faulting to cataclastic flow: Permeability evolution [J]. Journal of Geophysical Research Solid Earth, 1997, 102(B2): 3027–3042. DOI: https://doi.org/10.1029/96JB03282.

    Article  Google Scholar 

  15. SURI P, AZEEMUDDIN M, ZAMAN M, KUKRETI A R, ROEGIERS J C. Stress-dependent permeability measurement using the oscillating pulse technique [J]. Journal of Petroleum Science & Engineering, 1997, 17(3, 4): 247–264. DOI: https://doi.org/10.1016/S0920-4105(96)00073-3.

    Article  Google Scholar 

  16. DAVID C, MENENDEZ B, ZHU W, DAVID C, MENENDEZ B, ZHU W, WONG T F. Mechanical compaction, microstructures and permeability evolution in sandstones * [J]. Physics & Chemistry of the Earth Part A: Solid Earth & Geodesy, 2001, 26(1, 2): 45–51. DOI: https://doi.org/10.1016/S1464-1895(01)00021-7.

    Article  Google Scholar 

  17. LIU Z B, SHAO J F, HU D W, XIE S Y. Gas permeability evolution with deformation and cracking process in a white marble under compression [J]. Transport in Porous Media, 2016, 111(2): 1–15. DOI:10.1007/s11242-015-0603-9.

    Article  MathSciNet  Google Scholar 

  18. ZENG K, XU J, HE P, WANG C G. Experimental study on permeability of coal sample subjected to triaxial stresses [J]. Procedia Engineering, 2011, 26(1): 1051–1057. DOI: https://doi.org/10.1016/j.proeng.2011.11.2273.

    Article  Google Scholar 

  19. XU P, YANG S Q. Permeability evolution of sandstone under short-term and long-term triaxial compression [J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 85: 152–164. DOI: https://doi.org/10.1016/j.ijrmms. 2016. 03.016.

    Article  Google Scholar 

  20. MITCHELL T M, FAULKNER D R. Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B11): 226–227. DOI: https://doi.org/10.1029/2008JB005588.

    Google Scholar 

  21. WANG H, XU W, SHAO J, SKOCZYLAS F. The gas permeability properties of low-permeability rock in the process of triaxial compression test [J]. Materials Letters, 2014, 116(2): 386–388. DOI: https://doi.org/10.1016/j.matlet.2013.11.061.

    Article  Google Scholar 

  22. CHENG C, CHEN X, ZHANG S. Multi-peak deformation behavior of jointed rock mass under uniaxial compression: Insight from particle flow modeling [J]. Engineering Geology, 2016, 213: 25–45. DOI: https://doi.org/10.1016/j.enggeo.2016.08.010.

    Article  Google Scholar 

  23. FAN X, KULATILAKE P H S W, CHEN X. Mechanical behavior of rock-like jointed blocks with multi-nonpersistent joints under uniaxial loading: A particle mechanics approach [J]. Engineering Geology, 2015, 190: 17–32. DOI: https://doi.org/10.1016/j.enggeo.2015.02.008.

    Article  Google Scholar 

  24. YANG S Q, HUANG Y H, JING H W, LIU X R. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression [J]. Engineering Geology, 2014, 178(6): 28–48. DOI: https://doi.org/10.1016/j.enggeo.2014.06.005.

    Article  Google Scholar 

  25. YANG X X, KULATILAKE P H S W, CHEN X, JING H W, YANG S Q. Particle flow modeling of rock blocks with nonpersistent open joints under uniaxial compression [J]. International Journal of Geomechanics, 2016, 16(6): 04016020. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000649.

    Article  Google Scholar 

  26. HUANG Y H, YANG S Q, ZENG W. Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures [J]. Journal of Central South University, 2016, 23(6): 1474–1485. DOI: https://doi.org/10.1007/s11771-016-3200-3.

    Article  Google Scholar 

  27. YANG X X, JING H W, CHEN K F, YANG S Q. Failure behavior around a circular opening in a rock mass with non-persistent joints: A parallel-bond stress corrosion approach [J]. Journal of Central South University, 2017, 24(10): 2406–2420. DOI: https://doi.org/10.1007/s11771-017-3652-0.

    Article  Google Scholar 

  28. THALLAK S, ROTHENBURG L, DUSSEAULT M. Simulation of multiple hydraulic fractures in a discrete element system [C]//Proceedings of the The 32nd US Symposium on Rock Mechanics. Norman, Oklahoma, F, 1991.

    Google Scholar 

  29. BRUNO M S. Micromechanics of stress-induced permeability anisotropy and damage in sedimentary rock [J]. Mechanics of Materials, 1994, 18(1): 31–48. DOI: https://doi.org/10.1016/0167-6636(94)90004-3.

    Article  MathSciNet  Google Scholar 

  30. AL-BUSAIDI A, HAZZARD J F, YOUNG R P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite [J]. Journal of Geophysical Research Solid Earth, 2005, 110(B6): 351–352. DOI: https://doi.org/10.1029/2004JB003297.

    Google Scholar 

  31. WANG T, ZHOU W, CHEN J, XIAO X, LI Y, ZHAO X Y. Simulation of hydraulic fracturing using particle flow method and application in a coal mine [J]. International Journal of Coal Geology, 2014, 121: 1–13. DOI: https://doi.org/10.1016/j.coal.2013.10.012.

    Article  Google Scholar 

  32. CUNDALL P A, STRACK O D L. A discrete numerical mode for granular assemblies [J]. Géotechnique, 1979, 29(1): 47–65. DOI: https://doi.org/10.1680/geot.1979.29.1.47.

    Article  Google Scholar 

  33. CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(7): 997–1010. DOI: https://doi.org/10.1016/j.ijrmms.2007.02.002.

    Article  Google Scholar 

  34. CUNDALL P A. Fluid Formulation for PFC2D [M]. Minneapolis, MN, USA: Itasca Consulting Group, 2000.

    Google Scholar 

  35. HAZZARD J F, YOUNG R P, OATES S J. Numerical modelling of seismicity induced by fracture injections in a fractured reservoir [C]//Proceedings of the In Proceedings of the 5th North American Rock Mechanics Symposium Mining and Tunnel Innovation and Opportunity. Toronto, ON, Canada, 2002.

    Google Scholar 

  36. ZHAO X, PAUL YOUNG R. Numerical modeling of seismicity induced by fluid injection in naturally fractured reservoirs [J]. Geophysics, 2011, 76(6): WC169. DOI: https://doi.org/10.1190/geo2011-0025.1.

    Article  Google Scholar 

  37. ZHOU J, ZHANG L, BRAUN A, et al. Numerical modeling and investigation of fluid-driven fracture propagation in reservoirs based on a modified fluid-mechanically coupled model in two-dimensional particle flow code [J]. Energies, 2016, 9(9): 699. DOI: https://doi.org/10.3390/en9090699.

    Article  Google Scholar 

  38. PFC 5.0 manual [M]. Minneapolis, MN, USA: Itasca Consulting Group, 2015.

    Google Scholar 

  39. DAVY C A, SKOCZYLAS F, BARNICHON J D, LEBON P. Permeability of macro-cracked argillite under confinement: Gas and water testing [J]. Physics & Chemistry of the Earth Parts A/b/c, 2007, 32(8–14): 667–680. DOI: https://doi.org/10.1016/j.pce.2006.02.055.

    Article  Google Scholar 

  40. JIANG C L, QIANG S, JIANG Z Q, ZHU S Y. Permeability catastrophe of brittle rock during complete stress-strain path [J]. Zhongnan Daxue Xuebao, 2012, 43(2): 688–693. (in Chinese)

    Google Scholar 

  41. MATTH I S K, BELAYNEH M. Fluid flow partitioning between fractures and a permeable rock matrix [J]. Geophysical Research Letters, 2004, 31(7): 221–237. DOI: https://doi.org/10.1029/2003GL019027.

    Google Scholar 

  42. LIU H L, YANG T H, YU Q L, et al. Experimental study on fluid permeation evolution in whole failure process of tuff [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2009, 30(7): 1030–1033. (in Chinese)

    Google Scholar 

  43. LION M, SKOCZYLAS F, LED SERT B. Determination of the main hydraulic and poro-elastic properties of a limestone from Bourgogne, France [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(6): 915–925. DOI: https://doi.org/10.1016/j.ijrmms.2004.02.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-qi Yang  (杨圣奇).

Additional information

Foundation item: Project(BK20150005) supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, China; Project(2015XKZD05) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Yang, Sq., Tian, Wl. et al. Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code. J. Cent. South Univ. 25, 1367–1385 (2018). https://doi.org/10.1007/s11771-018-3833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3833-5

Key words

关键词

Navigation